scholarly journals From Agricultural Byproducts to Value-Added Materials: Wheat Straw-Based Hydrogels as Soil Conditioners?

2019 ◽  
Vol 7 (9) ◽  
pp. 8604-8612 ◽  
Author(s):  
Katja Heise ◽  
Maximilian Kirsten ◽  
Yvonne Schneider ◽  
Doris Jaros ◽  
Harald Keller ◽  
...  
2021 ◽  
pp. 126369
Author(s):  
Liga Lauberte ◽  
Galina Telysheva ◽  
Giancarlo Cravotto ◽  
Anna Andersone ◽  
Sarmite Janceva ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Yang ◽  
Mikkel Møller Henriksen ◽  
Rasmus Syrach Hansen ◽  
Mette Lübeck ◽  
Jesper Vang ◽  
...  

Abstract Background Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. Results With a ribonucleoprotein (RNP)-based CRISPR–Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. Conclusions In this study, we have successfully applied the RNP-based CRISPR–Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.


2020 ◽  
Author(s):  
Xinxing Wu ◽  
Wei Tang ◽  
Chen Huang ◽  
Caoxing Huang ◽  
Chenhuan Lai ◽  
...  

Abstract Background: Soil-derived exogenous ash (EA) poses a challenge toward lignocellulosics autohydrolysis due to its buffering capacity. Previous works focusing on this phenomenon have failed to also investigate the role that soluble salts, and organic matter plays in this system. Herein, sodium phosphate and sodium humate were employed as model buffering compounds representing soluble salts and organic matter and dosed into a de-ashed wheat straw (DWS) autohydrolysis process to show the potential impacts of WS attached soil conditioners on the WS autohydrolysis efficiency which would further affect the enzymatic digestibility of autohydrolyzed WS.Results: Results showed that with the increasing loadings of sodium phosphate and sodium humate resulted in elevated pH values (from 4.0 to 5.1 and from 4.1 to 4.7, respectively). Meanwhile, the reductions of xylan removal yields from ~84.3-61.4% to 72.3-53.0% by loading (1~30 g/L) sodium phosphate and sodium humate during WS autohydrolysis lead to a significant decrease of cellulose accessibilities which finally lead to a reduction of the enzymatic digestibility of autohydrolyzed WS from ~75.4-77.2% to 47.3-57.7%.Conclusion: The existence of different types soil conditioner model compounds result in various component fractions from autohydrolyzed WS in the process of autohydrolysis. A lack of sufficient xylan removal was found to drive the significant decrease in enzymatic accessibility. The results demonstrated the various effects of two typical tested soil conditioners on WS autohydrolysis and enzymatic hydrolysis.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xinxing Wu ◽  
Wei Tang ◽  
Chen Huang ◽  
Caoxing Huang ◽  
Chenhuan Lai ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 121
Author(s):  
Alexander Zwirzitz ◽  
Lauren Alteio ◽  
Daniel Sulzenbacher ◽  
Michael Atanasoff ◽  
Manuel Selg

The interest in using non-conventional yeasts to produce value-added compounds from low cost substrates, such as lignocellulosic materials, has increased in recent years. Setting out to discover novel microbial strains that can be used in biorefineries, an Issatchenkia orientalis strain was isolated from waste cooking oil (WCO) and its capability to produce ethanol from wheat straw hydrolysate (WSHL) was analyzed. As with previously isolated I. orientalis strains, WCO-isolated I. orientalis KJ27-7 is thermotolerant. It grows well at elevated temperatures up to 42 °C. Furthermore, spot drop tests showed that it is tolerant to various chemical fermentation inhibitors that are derived from the pre-treatment of lignocellulosic materials. I. orientalis KJ27-7 is particularly tolerant to acetic acid (up to 75 mM) and tolerates 10 mM formic acid, 5 mM furfural and 10 mM hydroxymethylfurfural. Important for biotechnological cellulosic ethanol production, I. orientalis KJ27-7 grows well on plates containing up to 10% ethanol and media containing up to 90% WSHL. As observed in shake flask fermentations, the specific ethanol productivity correlates with WSHL concentrations. In 90% WSHL media, I. orientalis KJ27-7 produced 10.3 g L−1 ethanol within 24 h. This corresponds to a product yield of 0.50 g g−1 glucose (97% of the theoretical maximum) and a volumetric productivity of 0.43 g L−1 h−1. Therefore, I. orientalis KJ27-7 is an efficient producer of lignocellulosic ethanol from WSHL.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
José I. Santos ◽  
Raquel Martín-Sampedro ◽  
Úrsula Fillat ◽  
José M. Oliva ◽  
María J. Negro ◽  
...  

Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages) were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated withp-hydroxycinnamates (p-coumarate and ferulate), whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins wereβ-O-4′ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.


2014 ◽  
Vol 70 ◽  
pp. 68-77 ◽  
Author(s):  
Wael Abdelmoez ◽  
Soah M. Nage ◽  
Ali Bastawess ◽  
Ahmed Ihab ◽  
Hiroke Yoshida

2021 ◽  
Vol 118 (18) ◽  
pp. e2008888118
Author(s):  
Nicola C. Oates ◽  
Amira Abood ◽  
Alexandra M. Schirmacher ◽  
Anna M. Alessi ◽  
Susannah M. Bird ◽  
...  

Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major β-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.


Sign in / Sign up

Export Citation Format

Share Document