terrestrial source
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 17)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Wenwen Wang ◽  
Li Zhao ◽  
Wei Li ◽  
Junyi Chen ◽  
Shuhang Wang

Abstract Lake organic matter is one of the important forms of terrestrial carbon, and its sedimentary evolution is affected by many factors such as climate and source. However, few studies have been conducted on the bidirectional feedback mechanism between the sedimentary evolution of organic matter and climate change in cold and arid lakes. Historical variations of the sediment organic matter (SOM) and source construction of Hulun Lake, a typical lake in the cold and arid region of China, were studied by multiple methods. The interactions and feedback mechanisms between the sedimentary evolution, climate change, and source construction change were also discussed. Overall, the characteristic indexes of the SOM showed obvious and uniform characteristics of periodical changes. The indexes were relatively stable before 1920, and fluctuated from 1920 to 1979. Since the 1980s, the total organic carbon, carbon stable isotope, and fluorescence intensity of the protein-like component in the water extractable organic matter in the SOM has increased, while the carbon to nitrogen ratio decreased. The absolute dominant contribution of terrestrial source to the SOM had changed, and the relative average contribution rate of autochthonous source increased from 17.6% before 1920 to 36.9% after 2000. The increase of temperature, strong evaporation concentration effect, and the source construction change are the important driving factors of the sedimentary evolution of organic matter in Hulun Lake.


2021 ◽  
Author(s):  
◽  
Hannah Lema Brackley

<p>Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver up to 40% of the suspended sediment load and up to 35% of the riverine particulate organic carbon (POC) load to the world's oceans. On the east coast of New Zealand's North Island, the Waipaoa River drains a steep, 2205 km2 catchment located on the active collisional East Coast Continental Margin. It has an annual suspended sediment load of 15 Tg (15 x 1012 g), making up ~7% of New Zealand's total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific Ocean of 86.7 Gg (86.7 x 109 g). The annual loss of OC to the floodplain is ~9% of this annual POC discharge (~7.8 Gg). A range of analyses (including organic carbon content (%OC), stable carbon isotopes (Delta 13C), radiocarbon (14C), carbon to nitrogen ratios (C/N)a and carbon loadings (OC:SA)) were performed on correlative sediments from a transect of 7 cores from depositional sites located on the Waipaoa River floodplain and adjacent continental shelf and slope. Results were used to determine biogeochemical characteristics of organic carbon (OC) at a range of depositional sites during its transfer from terrestrial source to marine sink, and how large floods impact OC transfer to the marine environment. The high temporal variability in OC content (0.2 to 3.5%) and different source signatures (Delta 13C of -26.7 to -20.6% degrees) of Waipaoa River floodplain deposits prevented the establishment of a clear benchmark signature for flood deposits that may be recognisable in the marine sedimentary record. The high spatial and temporal variability of floodplain sediment OC, combined with the areal extent of floodplains within the catchment, indicates the appreciable modulating effect the floodplain has on OC transfers to the ocean. Since extensive stopbanks were constructed on the main floodplain since the 1940' s, sequestration of OC in floodplain sediments has reduced by about half, increasing the overall efficiency of the Waipaoa River in transferring terrestrial OC directly to the marine environment.  Flood layers are preserved in the marine sedimentary record. Continental shelf sediments indicate that during Cyclone Bola (March 1988, a rainfall event with a >100 year return period), the extreme river discharge produced a hyperpycnal (negatively buoyant) plume, preserved as a ~10 cm thick layer on the inner shelf and a ~1 cm thick layer on the mid-shelf. The flood layer contains a significant amount of terrestrially-sourced OC (up to 86% of total OC in >25 Mu m fraction) which subsequently was rapidly buried by normal marine deposits (in which ~60% of OC in >25 Mu m fraction is terrestrial), thereby preserving its strong terrestrial source signature. As sediments are physically and biologically processed at various depositional sites across the continental shelf and slope, they lose some of their modern terrestrial OC, and the concurrent addition of marine sourced OC results in the sediments gaining a stronger marine biogeochemical signature (Delta 13C values increasing from -26.2% degrees for floodplain sediments to -21.6% degrees for upper continental slope sediments). Carbon loading (OC:SA) and 14C data revealed the contributions of kerogen, modern terrestrial OC and modern marine OC to the total OC of continental shelf and slope surface sediments. Sediments retain about 40% of their terrestrial OC following transport to the continental slope, of which a significant amount consists of kerogen. Because of high erosion rates within the catchment, kerogen associated with the particles escapes oxidation, and therefore makes up a large part of the POC flux. Kerogen is preserved across the margin to the mid-slope, where only 8% of the bulk sediment OC consists of modern terrestrial OC, 58% is modern marine OC and 34% is kerogen. Biomarker analyses of surface samples also support findings that terrestrial OC is being transferred across the continental margin, with plant sterols, long chain alcohols and long chain fatty acids (biomarkers indicative of vascular plants) persisting as far offshore as the mid-continental slope. Results presented verify and add to the understanding of OC transfers and transformations at a range of depositional sites from terrestrial source to marine sink. This study provides the first quantitative assessment of land to ocean OC transfers from New Zealand. These findings, together with information on sediment budgets and depositional rates of OC in terrestrial and marine depositional environments, could provide a vital step toward establishing global OC budgets for small mountainous island environments.</p>


2021 ◽  
Author(s):  
◽  
Hannah Lema Brackley

<p>Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver up to 40% of the suspended sediment load and up to 35% of the riverine particulate organic carbon (POC) load to the world's oceans. On the east coast of New Zealand's North Island, the Waipaoa River drains a steep, 2205 km2 catchment located on the active collisional East Coast Continental Margin. It has an annual suspended sediment load of 15 Tg (15 x 1012 g), making up ~7% of New Zealand's total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific Ocean of 86.7 Gg (86.7 x 109 g). The annual loss of OC to the floodplain is ~9% of this annual POC discharge (~7.8 Gg). A range of analyses (including organic carbon content (%OC), stable carbon isotopes (Delta 13C), radiocarbon (14C), carbon to nitrogen ratios (C/N)a and carbon loadings (OC:SA)) were performed on correlative sediments from a transect of 7 cores from depositional sites located on the Waipaoa River floodplain and adjacent continental shelf and slope. Results were used to determine biogeochemical characteristics of organic carbon (OC) at a range of depositional sites during its transfer from terrestrial source to marine sink, and how large floods impact OC transfer to the marine environment. The high temporal variability in OC content (0.2 to 3.5%) and different source signatures (Delta 13C of -26.7 to -20.6% degrees) of Waipaoa River floodplain deposits prevented the establishment of a clear benchmark signature for flood deposits that may be recognisable in the marine sedimentary record. The high spatial and temporal variability of floodplain sediment OC, combined with the areal extent of floodplains within the catchment, indicates the appreciable modulating effect the floodplain has on OC transfers to the ocean. Since extensive stopbanks were constructed on the main floodplain since the 1940' s, sequestration of OC in floodplain sediments has reduced by about half, increasing the overall efficiency of the Waipaoa River in transferring terrestrial OC directly to the marine environment.  Flood layers are preserved in the marine sedimentary record. Continental shelf sediments indicate that during Cyclone Bola (March 1988, a rainfall event with a >100 year return period), the extreme river discharge produced a hyperpycnal (negatively buoyant) plume, preserved as a ~10 cm thick layer on the inner shelf and a ~1 cm thick layer on the mid-shelf. The flood layer contains a significant amount of terrestrially-sourced OC (up to 86% of total OC in >25 Mu m fraction) which subsequently was rapidly buried by normal marine deposits (in which ~60% of OC in >25 Mu m fraction is terrestrial), thereby preserving its strong terrestrial source signature. As sediments are physically and biologically processed at various depositional sites across the continental shelf and slope, they lose some of their modern terrestrial OC, and the concurrent addition of marine sourced OC results in the sediments gaining a stronger marine biogeochemical signature (Delta 13C values increasing from -26.2% degrees for floodplain sediments to -21.6% degrees for upper continental slope sediments). Carbon loading (OC:SA) and 14C data revealed the contributions of kerogen, modern terrestrial OC and modern marine OC to the total OC of continental shelf and slope surface sediments. Sediments retain about 40% of their terrestrial OC following transport to the continental slope, of which a significant amount consists of kerogen. Because of high erosion rates within the catchment, kerogen associated with the particles escapes oxidation, and therefore makes up a large part of the POC flux. Kerogen is preserved across the margin to the mid-slope, where only 8% of the bulk sediment OC consists of modern terrestrial OC, 58% is modern marine OC and 34% is kerogen. Biomarker analyses of surface samples also support findings that terrestrial OC is being transferred across the continental margin, with plant sterols, long chain alcohols and long chain fatty acids (biomarkers indicative of vascular plants) persisting as far offshore as the mid-continental slope. Results presented verify and add to the understanding of OC transfers and transformations at a range of depositional sites from terrestrial source to marine sink. This study provides the first quantitative assessment of land to ocean OC transfers from New Zealand. These findings, together with information on sediment budgets and depositional rates of OC in terrestrial and marine depositional environments, could provide a vital step toward establishing global OC budgets for small mountainous island environments.</p>


Author(s):  
Venkat Abhiram Earny ◽  
Venkatesh Kamath ◽  
Anuraag Muralidharan ◽  
Vandana K E ◽  
Kanav Khera

The steady increase in the emergence of multidrug-resistant bacteria amongst medical centers, environment, animals, and food is of major concern for health care professionals. Most of the currently used mainline antibacterial drugs were discovered during the golden era of antibiotic discovery (1950-60). During this period, many natural, semi-synthetic, and synthetic molecules were screened for their antimicrobial potential against a spectrum of clinical pathogens. Nevertheless, there was a gap of forty long years until the release of a newer class of antibiotics in the market. It is very vital to develop an integrated approach to combat antimicrobial resistance. There has been a paradigm shift in the field of marine drug discovery in the last two decades. Bioactive metabolites derived from the marine ecosystem are known to exhibit a wide array of pharmacological activity than the terrestrial source. Among all marine organisms, secondary metabolites derived from microbes are the most underexplored natural source. Screening of marine microbes for various antimicrobial molecules has become a noteworthy trend in marine drug discovery and provides a ray of hope for combating antimicrobial resistance.


2021 ◽  
Vol 118 (18) ◽  
pp. e2008888118
Author(s):  
Nicola C. Oates ◽  
Amira Abood ◽  
Alexandra M. Schirmacher ◽  
Anna M. Alessi ◽  
Susannah M. Bird ◽  
...  

Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major β-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.


Author(s):  
Xu Zhang ◽  
Juan Liu ◽  
Ruiya Zhou

Revealing the binding properties of calcium ion (Ca2+) and magnesium ion (Mg2+) to chromophoric dissolved organic matter (CDOM) facilities understanding the effect of natural water composition on the photophysics of dissolved organic matter. Steady-state and time-resolved fluorescence spectrometry, and dynamic light scattering were applied to investigate the fluorescence quenching process of CODM by Ca2+ and Mg2+. The binding of Ca2+ and Mg2+ preferred terrestrial CDOM to aquatic CDOM. The fluorescence quenching of CDOM by cations mainly occurred in a static process, which was based on the fact that the decrease of steady-state fluorescence intensity was greater than fluorescence lifetime. The fluorescence quenching was profound under longer excitation and emission wavelength. The binding constant (K, L/mol) for Ca2+ to CDOM from terrestrial source ranged from 4.29 to 5.09 (lgK), which was approximately one order of magnitude higher than that of Mg2+ to CDOM (3.86 to 4.56). Fluorescence decay became faster in the presence of Ca2+ and Mg2+. Lifetime distribution of CDOM excited states shifted to small value side in the presence of metal ions, particularly for Ca2+, indicating fluorescence quenching of CDOM mainly through the interaction of Ca2+/Mg2+ with relatively long-lived fluorophores.


2021 ◽  
Author(s):  
Nestor Gaviria-Lugo ◽  
Charlotte Läuchli ◽  
Hella Wittmann ◽  
Anne Bernhardt ◽  
Patrick Frings ◽  
...  

&lt;p&gt;Leaf wax n-alkanes are well known higher plant biomarkers. These molecules are widely found in geological archives, where their concentration, average chain length (ACL) and isotopic composition (&amp;#948;&lt;sup&gt;13&lt;/sup&gt;C&lt;sub&gt;alkanes&lt;/sub&gt; and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H&lt;sub&gt;alkanes&lt;/sub&gt;) serve as proxies for changes in continental vegetation and hydroclimate. While mechanistic relationships of these proxies with climate and vegetation are relatively well understood, little is known about the transport of those biomarkers into geological archives. In marine sedimentary records, leaf wax biomarkers are often interpreted to represent the contiguous continental catchments, but few studies have examined the fidelity with which n-alkanes in marine sediments record the corresponding continental conditions.&lt;/p&gt;&lt;p&gt;Here we assess the variability of n-alkane composition in terrestrial and marine sediments from 26&amp;#176;S to 41&amp;#176;S along the Chilean coast. The sample sites are located along a strong vegetation and precipitation gradient, with precipitation ranging from 25 to 2300 mm/yr. We evaluate riverbed sediments from twenty catchments, draining the western slopes of the Andes to the Pacific Ocean and compare the values to the ones of 19 samples from marine surface sediments recovered directly offshore each catchment.&lt;/p&gt;&lt;p&gt;The correspondence between terrestrial and marine n-alkanes signals changes along the precipitation gradient. Where precipitation rates range between 100 to 500 mm/yr, ACL and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H&lt;sub&gt;alkanes&lt;/sub&gt; values agree well between continental and adjacent marine sediments. At precipitation rates below 100 mm/yr, ACL and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H&lt;sub&gt;alkanes&lt;/sub&gt; values recorded in marine sediments are consistently lower than the ones found in continental sediments. At precipitation rates higher than 500 mm/yr, ACL and &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H&lt;sub&gt;alkanes &lt;/sub&gt;values registered in marine sediments are consistently higher than in the adjacent catchments.&lt;/p&gt;&lt;p&gt;Multiple factors, including mixing of sediment from different sources along the transport pathway from continent to ocean or variability in catchment storage capacity, likely cause marine n-alkane composition to be offset from their terrestrial source. Nevertheless, the consistent change in behavior along the gradient suggest that precipitation is the dominant factor on the transmission of n-alkane signals along the sedimentary routing systems of the study area. Moreover, since correspondence decreases at high and low precipitation, our data suggest that the sensitivity of the leaf wax biomarker proxy in marine archives towards hydrological change may be subdued due to sedimentary integration. This may have implications for quantitative interpretations derived from n-alkanes and their isotopes in marine paleorecords.&lt;/p&gt;


2021 ◽  
Vol 9 (1) ◽  
pp. 56-65
Author(s):  
Susheel Kumar ◽  
◽  
Atul Kumar Varma ◽  
Vinod Atmaram Mendhe ◽  
◽  
...  

Cleat attributes and coal quality have been evaluated through field observation, SEM images analysis and proximate-ultimate analyses on representative coal samples collected from four different underground coal mines of Son-Valley coal Basin of central India for the characterization of coal bed methane prospective. The coal samples were characterized as durainic-clarodurainic-vitrainic type to durocalrainic-clarainic type based on litho-type composition. Cleats were identified as face cleat and butt cleat range 5-10 cm-1 to 2–3 cm-1 depending on the litho-types whereas, cleat density ranges 7-16 cm-2 revealed that cleat development is influenced by litho-types. The cleat orientation shows two main strikes almost NW-SE to NNW-SSE and NE-SW to ENE-WSW elucidates the face cleat and butt cleats are perpendicular to each other. SEM images for coal samples were analysed to validate the cleat geometry at micro-scale, illustrates that face cleat and butt cleats are orthogonal to each other. The technological properties viz. moisture (Wa), volatile matter yield (VMdaf) ash yield (Ad) of coal samples are placed in the range of 0.66–11.80, 32.0–50.05 and 13.23–43.73 wt.% respectively. The fuel ratios of all the samples varied from 1.05–2.35 indicating that coal samples were of sub-bituminous to bituminous rank. The carbon and hydrogen (Cdaf, Hdaf) content of samples ranges from 68.89–86.08 and 5.22–6.60 wt.% respectively. The atomic ratio H/C and O/C through van-Krevelen diagram demonstrate the predominance of type-III/IV kerogens usually derived from terrestrial source in studied coal belongs to the gas genesis window.


2020 ◽  
Vol 17 (22) ◽  
pp. 5655-5667
Author(s):  
Teresa M. Seifried ◽  
Paul Bieber ◽  
Laura Felgitsch ◽  
Julian Vlasich ◽  
Florian Reyzek ◽  
...  

Abstract. Silver birch (Betula pendula) is known to contain ice-nucleating macromolecules (INMs) to survive in harsh environments. However, little is known about the release and transport of INMs from birch trees into the atmosphere. In this study, we conducted in situ and in vivo investigations on INMs from nine birches growing in an alpine valley (Ötztal, Austria). A detailed analysis of drill cores showed that INM concentration increases towards outer layers, reaching its maximum near the surface. Aqueous extracts from the surfaces of leaves, bark, primary wood and secondary wood contained INMs (34∕36) with concentrations ranging from 9.9×105 to 1.8×109 INMs cm−2. In a field study, we analysed the effect of precipitation on the release of these INMs attached to the surface of the trees. These experiments showed that INMs are splashed and aerosolized into the environment during rainfall events, at concentrations and freezing temperatures similar to in vivo samples. Our work sheds new light on the release and transport of INMs from birch surfaces into the troposphere. Birches growing in boreal and alpine forests should be considered an important terrestrial source of INMs.


2020 ◽  
Author(s):  
Teresa M. Seifried ◽  
Paul Bieber ◽  
Laura Felgitsch ◽  
Julian Vlasich ◽  
Florian Reyzek ◽  
...  

Abstract. Silver birch (Betula pendula) are known to contain ice-nucleating macromolecules (INMs) to survive in harsh environments. However, little is known about the release and transport of INMs from birch trees into the atmosphere. In this study, we conducted in-situ and in-vivo investigations on INM from nine birches growing in an alpine valley (Ötztal, Austria). A detailed analysis of drill cores shows that INM concentration increases towards outer layers, reaching its maximum near the surface. Aqueous extracts from the surfaces of leaves, bark, primary wood and secondary wood contained INMs (34/36) with concentrations ranging from 9.9·105 to 1.8·109 INM cm−2. In a field study, we analysed the effect of precipitation on the release of these INMs attached to the surface of the trees. These experiments showed that INMs are splashed and aerosolized into the environment during rainfall events, at concentrations and freezing temperatures similar to in-vivo samples. Our work sheds new light on the release and transport of INMs from birch surfaces into the troposphere. Birches growing in boreal and alpine forests should be considered as an important terrestrial source of INMs.


Sign in / Sign up

Export Citation Format

Share Document