Characterization of an inorganic phosphate binding site on the isolated, reconstitutively active .beta. subunit of F0.cntdot.F1 ATP synthase

Biochemistry ◽  
1985 ◽  
Vol 24 (10) ◽  
pp. 2482-2487 ◽  
Author(s):  
Daniel Khananshvili ◽  
Zippora Gromet-Elhanan

1988 ◽  
Vol 43 (3-4) ◽  
pp. 213-218 ◽  
Author(s):  
Bernhard Huchzermeyer

A single binding site for phosphate was found on isolated chloroplast coupling factor in the absence of nucleotides. In our experiments the phosphate binding site showed a Kd of 170 μᴍ. We did not observe any differences whether the ATPase activity of CF] had been activated or not. If the enzyme was incubated with [γ-32P]ATP the amount of 32P bound per CF1 depended on the pretreatment of the enzyme: In the presence of ADP no ATP or phosphate was bound to CF,. After activation of ATPase activity one mol of ATP per mol CF, was rapidly bound and hydrolyzed while there was a slowly occurring binding of another phosphate without concomitant nucleotide binding. We conclude that there are two different types of phosphate binding observed in our experiments: 1) Inorganic phosphate can be bound by one catalytic site per mol of CF1 2) The γ-phosphate of ATP is able to bind to an ATP binding domain of the enzyme if this domain can exchange substrates with the incubation medium. This ATP binding domain appears to differ from the site binding inorganic phosphate, because at least a portion of the coupling factor contains more than one labelled phosphate during our ATPase tests.



2019 ◽  
Vol 1863 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Guillem Prats-Ejarque ◽  
Jose A. Blanco ◽  
Vivian A. Salazar ◽  
Victòria M. Nogués ◽  
Mohammed Moussaoui ◽  
...  


Biochemistry ◽  
1991 ◽  
Vol 30 (28) ◽  
pp. 6842-6847 ◽  
Author(s):  
Rita S. F. Lee ◽  
Janet Pagan ◽  
Susan Wilke-Mounts ◽  
Alan E. Senior


1984 ◽  
Vol 218 (1) ◽  
pp. 45-60 ◽  
Author(s):  
A Lorek ◽  
K S Wilson ◽  
M S P Sansom ◽  
D I Stuart ◽  
E A Stura ◽  
...  

The binding to glycogen phosphorylase b of glucose 6-phosphate and inorganic phosphate (respectively allosteric inhibitor and substrate/activator of the enzyme) were studied in the crystal at 0.3 nm (3A) resolution. Glucose 6-phosphate binds in the alpha-configuration at a site that is close to the AMP allosteric effector site at the subunit-subunit interface and promotes several conformational changes. The phosphate-binding site of the enzyme for glucose 6-phosphate involves contacts to two cationic residues, Arg-309 and Lys-247. This site is also occupied in the inorganic-phosphate-binding studies and is therefore identified as a high-affinity phosphate-binding site. It is distinct from the weaker phosphate-binding site of the enzyme for AMP, which is 0.27 nm (2.7A) away. The glucose moiety of glucose 6-phosphate and the adenosine moiety of AMP do not overlap. The results provide a structural explanation for the kinetic observations that glucose 6-phosphate inhibition of AMP activation of phosphorylase b is partially competitive and highly co-operative. The results suggest that the transmission of allosteric conformational changes involves an increase in affinity at phosphate-binding sites and relative movements of alpha-helices. In order to study glucose 6-phosphate and phosphate binding it was necessary to cross-link the crystals. The use of dimethyl malondi-imidate as a new cross-linking reagent in protein crystallography is discussed.









1995 ◽  
Vol 6 (6) ◽  
pp. 627-636 ◽  
Author(s):  
S Watanabe ◽  
S Ishida ◽  
K Koike ◽  
K Arai

Interleukin 3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) activates c-fos, c-jun, and c-myc genes and proliferation in both hematopoietic and nonhematopoietic cells. Using a series of deletion mutants of the beta subunit of human GM-CSF receptor (hGMR) and inhibitors of tyrosine kinase, two distinct signaling pathways, one for activation of c-fos and c-jun genes, and the other for cell proliferation and activation of c-myc gene have been elucidated. In contrast to wealth of information on the pathway leading to activation of c-fos/c-jun genes, knowledge of the latter is scanty. To clarify the mechanisms of activation of c-myc gene by cytokines, we established a transient transfection assay in mouse proB cell line BA/F3 cells expressing hGMR. Analyses of hGMR beta subunit mutants revealed two cytoplasmic regions involved in activation of the c-myc promoter, one is essential and the other is dispensable but enhances the activity. These regions are located at the membrane proximal and the distal regions covering amino acid positions 455-544 and 544-589, respectively. Characterization of cis-acting regulatory elements of the c-myc gene showed that the region containing the P2 promoter initiation site is sufficient to mediate the response to mIL-3 or hGM-CSF. Electrophoretic mobility shift assay using an oligonucleotide corresponding to the distal putative E2F binding site revealed that p107/E2F complex, the negative regulator of E2F, decreased, and free E2F increased after mIL-3 stimulation. These results support the thesis that mIL-3 or hGM-CSF regulates the c-myc promoter by altering composition of the E2F complexes at E2F binding site.



Sign in / Sign up

Export Citation Format

Share Document