Conformation of the Substrate and Pterin Cofactor Bound to Human Tryptophan Hydroxylase. Important Role of Phe313 in Substrate Specificity†

Biochemistry ◽  
2001 ◽  
Vol 40 (51) ◽  
pp. 15591-15601 ◽  
Author(s):  
Jeffrey McKinney ◽  
Knut Teigen ◽  
Nils Åge Frøystein ◽  
Clotilde Salaün ◽  
Per M. Knappskog ◽  
...  

2002 ◽  
Vol 292 (3) ◽  
pp. 639-641 ◽  
Author(s):  
S.Colette Daubner ◽  
Graham R. Moran ◽  
Paul F. Fitzpatrick


2015 ◽  
pp. mvv108 ◽  
Author(s):  
Shouji Takahashi ◽  
Kozue Shimada ◽  
Shunsuke Nozawa ◽  
Masaru Goto ◽  
Katsumasa Abe ◽  
...  


2021 ◽  
Vol 118 (15) ◽  
pp. e2022379118
Author(s):  
Shyam R. Iyer ◽  
Kasper D. Tidemand ◽  
Jeffrey T. Babicz ◽  
Ariel B. Jacobs ◽  
Leland B. Gee ◽  
...  

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate–bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.



2019 ◽  
Vol 31 (2) ◽  
pp. 256-262 ◽  
Author(s):  
Aferdita Goci Uka ◽  
◽  
Ferid Agani ◽  
Afrim Blyta ◽  
Blerina Hoxha ◽  
...  


2013 ◽  
Vol 114 (12) ◽  
pp. 1668-1676 ◽  
Author(s):  
Jianping Chen ◽  
Jennifer Magnusson ◽  
Gerard Karsenty ◽  
Kevin J. Cummings

The role of brain stem serotonin (5-hydroxytryptamine, 5-HT) in autoresuscitation in neonatal life is unclear. We hypothesized that a specific loss of 5-HT would compromise gasping and autoresuscitation mainly in the second postnatal week and that acute restoration of 5-HT would reverse the defects. We exposed postnatal day (P)4–5, P8–9, and P11–12 tryptophan-hydroxylase-2 knockout ( TPH2−/−) and wild-type littermates (WT) to 10 episodes of anoxia (97% N2, 3% CO2), measuring survival, gasp latency, gasp frequency ( fB), and the time required to restore eupnea and heart rate. We also tested P8–9 TPH2−/− mice after restoring 5-HT with a single injection of 5-hydroxytryptophan (5-HTP) 1–2 h before testing or with multiple injections beginning 24 h before testing. At P4–5 and P8–9, but not at P11–12, gasp latency and the recovery of eupnea were delayed ∼2- to 3-fold in TPH2−/− pups compared with WT ( P < 0.001). At all ages, TPH2−/− pups displayed reduced gasp fB (∼20–30%; P < 0.001) and delayed heart rate recovery (∼60%; P = 0.002) compared with WT littermates. TPH2−/− survival was reduced compared with WT ( P < 0.001), especially at P8–9 and P11–12 ( P = 0.004). Whereas 1–2 h of 5-HTP treatment improved the gasp latency and fB of P8–9 TPH2−/− pups, improved cardiorespiratory recovery and survival required 24 h of treatment. Our data suggest that 5-HT operates over a long time span (∼24 h) to improve survival during episodic severe hypoxia. Early in development (P4–9), 5-HT is critical for both respiratory and cardiovascular components of autoresuscitation; later (P11–12), it is critical mainly for cardiovascular components. Nevertheless, the effect of 5-HT deficiency on survival is most striking from P8 to P12.



2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Miyako Shiraishi ◽  
Shigenori Iwai

ABSTRACT Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ. IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.



1967 ◽  
Vol 10 (5) ◽  
pp. 908-912 ◽  
Author(s):  
Alexander. Bloch ◽  
Morris J. Robins ◽  
James R. McCarthy


Sign in / Sign up

Export Citation Format

Share Document