Possible role of a histidine residue in the substrate specificity of yeast d-aspartate oxidase

2015 ◽  
pp. mvv108 ◽  
Author(s):  
Shouji Takahashi ◽  
Kozue Shimada ◽  
Shunsuke Nozawa ◽  
Masaru Goto ◽  
Katsumasa Abe ◽  
...  
Biochemistry ◽  
1995 ◽  
Vol 34 (18) ◽  
pp. 6059-6068 ◽  
Author(s):  
Eusebio Perdiguero ◽  
Dolores de Arriaga ◽  
Felix Busto ◽  
Joaquin Soler

2001 ◽  
Vol 204 (11) ◽  
pp. 2029-2033
Author(s):  
Frank B. Jensen

SUMMARY Autoxidation of oxyhaemoglobin (oxyHb) to methaemoglobin was measured at different temperatures in haemoglobin solutions from Atlantic hagfish, river lamprey, common carp, yellowfin tuna and pig. The aims were to evaluate the impact of the absent distal histidine in hagfish haemoglobin, the importance of oxyHb being either monomeric (hagfish and lamprey) or tetrameric (carp, tuna and pig) and to gain information on the temperature-sensitivity of autoxidation. The rate of autoxidation was lower in hagfish than in carp, yellowfin tuna and lamprey haemoglobins at any given temperature. Substitution of the distal histidine residue (His E7) with glutamine in hagfish haemoglobin was therefore not associated with an accelerated autoxidation, as might be expected on the basis of the normal protective role of His E7. Glutamine may have similar qualities to histidine and be involved in the low susceptibility to autoxidation. The low oxidation rate of hagfish haemoglobin, together with an oxidation rate of lamprey haemoglobin that did not differ from that of carp and yellowfin tuna haemoglobins, also revealed that autoxidation was not accelerated in the monomeric oxyhaemoglobins. Pig haemoglobin was oxidised more slowly than fish haemoglobins, demonstrating that fish haemoglobins are more sensitive to autoxidation than mammalian haemoglobins. The rate of autoxidation of hagfish haemoglobin was, however, only significantly greater than that of pig haemoglobin at high temperatures. Autoxidation was accelerated by rising temperature in all haemoglobins. Arrhenius plots of carp and yellowfin tuna haemoglobin revealed a break at 25°C, reflecting a lower temperature-sensitivity between 5 and 25°C than between 25 and 40°C.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Miyako Shiraishi ◽  
Shigenori Iwai

ABSTRACT Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ. IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.


1967 ◽  
Vol 10 (5) ◽  
pp. 908-912 ◽  
Author(s):  
Alexander. Bloch ◽  
Morris J. Robins ◽  
James R. McCarthy

1991 ◽  
Vol 278 (2) ◽  
pp. 595-599 ◽  
Author(s):  
N Hirano ◽  
T Ichiba ◽  
A Hachimori

Treatment of the inorganic pyrophosphatase from thermophilic bacterium PS-3 with diethyl pyrocarbonate resulted in the almost complete loss of its activity, which followed pseudo-first-order kinetics. The presence of Mg2+ prevented the inactivation. Enzyme inactivated with diethyl pyrocarbonate was re-activated by hydroxylamine. The inactivation parallelled the amount of modified histidine residue, and a plot of the activity remaining against the amount of modified histidine residue suggested that the modification of one of two histidine residues totally inactivated the enzyme. The site involved was found to be located in a single lysyl endopeptidase-digest peptide derived from the ethoxy[14C]carbonylated enzyme. Amino acid analysis and sequence analysis of the peptide revealed that it comprised residues 96-119 of the inorganic pyrophosphatase from thermophilic bacterium PS-3. These results, when compared with those reported for the Escherichia coli and yeast enzymes, imply that His-118 of the inorganic pyrophosphatase from thermophilic bacterium PS-3 is located near the Mg(2+)-binding site and thus affects the binding of Mg2+.


1992 ◽  
Vol 209 (1) ◽  
pp. 415-422 ◽  
Author(s):  
Alfonso RIVERA-SAGREDO ◽  
F. Javier CANADA ◽  
Ofelia NIETO ◽  
Jesus JIMENEZ-BARBERO ◽  
Manuel MARTIN-LOMAS

Sign in / Sign up

Export Citation Format

Share Document