tryptophan hydroxylase 2
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 39)

H-INDEX

41
(FIVE YEARS 3)

Author(s):  
Abhineet Maini

Abstract: Background: The purpose of this article is to extend and elaborate on our current understanding of Calcitriol and Brain Serotonin synthesis; particularly on how the two may be related. Methods: Using a 2014 study involving clinical trials to extend this hypothesis. Results: Vitamin D (Calcitriol) activated the gene that codes for Tryptophan Hydroxylase 2, which synthesizes Brain Serotonin. It also inhibits Tryptophan Hydroxylase 1, which makes serotonin in the gut. Conclusion: Vitamin D is closely related to the synthesis of Brain Serotonin. If furthered, it may be used as a treatment for the Serotonin Anomaly in Autistic Children. Keywords: 1. Biochemistry 2. Genetics 3. Neuroscience 4. Physiology


2021 ◽  
pp. 1-18
Author(s):  
Christian Ulrich von Linstow ◽  
Jonas Waider ◽  
Marianne Skov-Skov Bergh ◽  
Marco Anzalone ◽  
Cecilie Madsen ◽  
...  

Background: A decline of brain serotonin (5-HT) is held responsible for the changes in mood that can be observed in Alzheimer’s disease (AD). However, 5-HT’ergic signaling is also suggested to reduce the production of pathogenic amyloid-4β (Aβ). Objective: To investigate the effect of targeted inactivation of tryptophan hydroxylase-2 (Tph2), which is essential for neuronal 5-HT synthesis, on amyloidosis in amyloid precursor protein (APP)swe/presenilin 1 (PS1) ΔE9 transgenic mice. Methods: Triple-transgenic (3xTg) APP/PS1 mice with partial (+/-) or complete Tph2 knockout (–/–) were allowed to survive until 6 months old with APP/PS1, Tph2–/–, and wildtype mice. Survival and weight were recorded. Levels of Aβ 42/40/38, soluble APPα (sAβPPα) and sAβPPβ, and cytokines were analyzed by mesoscale, neurotransmitters by mass spectrometry, and gene expression by quantitative PCR. Tph2, microglia, and Aβ were visualized histologically. Results: Tph2 inactivation in APP/PS1 mice significantly reduced viability, without impacting soluble and insoluble Aβ 42 and Aβ 40 in neocortex and hippocampus, and with only mild changes of soluble Aβ 42/Aβ 40. However, sAβPPα and sAβPPβ in hippocampus and Aβ 38 and Aβ 40 in cerebrospinal fluid were reduced. 3xTg–/–mice were devoid of Tph2 immunopositive fibers and 5-HT. Cytokines were unaffected by genotype, as were neocortical TNF, HTR2a and HTR2b mRNA levels in Tph2–/– mice. Microglia clustered around Aβ plaques regardless of genotype. Conclusion: The results suggest that Tph2 inactivation influences AβPP processing, at least in the hippocampus, although levels of Aβ are unchanged. The reduced viability of 3xTg–/–mice could indicate that 5-HT protects against the seizures that can impact the viability of APP/PS1 mice.


2021 ◽  
Vol 22 (23) ◽  
pp. 12851
Author(s):  
Valentina S. Evsiukova ◽  
Daria Bazovkina ◽  
Ekaterina Bazhenova ◽  
Elizabeth A. Kulikova ◽  
Alexander V. Kulikov

The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated “surface dwelling” induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.


Author(s):  
Masanori Ootaki ◽  
Tomoko Hiroi ◽  
Yuki Ohta ◽  
Yuko Takeba ◽  
Keisuke Kida ◽  
...  

2021 ◽  
Vol 271 ◽  
pp. 03070
Author(s):  
Xiaoyan Zhang ◽  
Yiming Wang

Depression is a world-wide psychological disease and millions of people suffer from it. The illness is basically characterized by low mood with some other diverse manifestations. The mutation in the gene sequence of Tryptophan hydroxylase 2 (TPH2) is one of the several possible causes of the depression, which results in the changed structure and function of TPH2, and then affects the synthetic process of 5- hydroxtrytamine (5-HT), so-called serotonin. The low level of 5-HT contributes to depression eventually, which has been tested by the animal model. This review purports to discuss the emerging relevance between TPH2 and depression as well as signaling pathways mediated by the gene expression, after that some therapeutic methods will be mentioned. It’s an urgency to understand the pathogenesis of depression and find more effective therapies, but there still remains a large amount of efforts to make and many mysteries to explore, thereby it is still a long way to go.


Sign in / Sign up

Export Citation Format

Share Document