Identification by Phage Display Selection of a Short Peptide Able To Inhibit Only the Strand Transfer Reaction Catalyzed by Human Immunodeficiency Virus Type 1 Integrase†

Biochemistry ◽  
2004 ◽  
Vol 43 (41) ◽  
pp. 13097-13105 ◽  
Author(s):  
Cecile Desjobert ◽  
Vaea Richard de Soultrait ◽  
Aurelie Faure ◽  
Vincent Parissi ◽  
Simon Litvak ◽  
...  
2014 ◽  
Vol 33 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Sara Mohammadzadeh ◽  
Masoumeh Rajabibazl ◽  
Mehdi Fourozandeh ◽  
Mohammad Javad Rasaee ◽  
Fatemeh Rahbarizadeh ◽  
...  

2003 ◽  
Vol 77 (10) ◽  
pp. 5685-5693 ◽  
Author(s):  
J. Gerardo García-Lerma ◽  
Hamish MacInnes ◽  
Diane Bennett ◽  
Patrick Reid ◽  
Soumya Nidtha ◽  
...  

ABSTRACT Stavudine (d4T) and zidovudine (AZT) are thymidine analogs widely used in the treatment of human immunodeficiency virus type 1 (HIV-1)-infected persons. Resistance to d4T is not fully understood, although the selection of AZT resistance mutations in patients treated with d4T suggests that both drugs have similar pathways of resistance. Through the analysis of genotypic changes in nine recombinant viruses cultured with d4T, we identified a new pathway for d4T resistance mediated by K65R, a mutation not selected by AZT. Passaged viruses were derived from treatment-naïve persons or HIV-1HXB2 and had wild-type reverse transcriptase (RT) or T215C/D mutations. K65R was selected in seven viruses and was associated with a high level of enzymatic resistance to d4T-triphosphate (median, 16-fold; range, 5- to 48-fold). The role of K65R in d4T resistance was confirmed in site-directed mutants generated in three different RT backgrounds. Phenotypic assays based on recombinant single-cycle replication or a whole-virus multiple replication cycle were unable to detect d4T resistance in d4T-selected mutants with K65R but detected cross-resistance to other nucleoside RT inhibitors. Four of the six viruses that had 215C/D mutations at baseline acquired the 215Y mutation alone or in association with K65R. Mutants having K65R and T215Y replicated less efficiently than viruses that had T215Y only, suggesting that selection of T215Y in patients treated with d4T may be favored. Our results demonstrate that K65R plays a role in d4T resistance and indicate that resistance pathways for d4T and AZT may not be identical. Biochemical analysis and improved replication assays are both required for a full phenotypic characterization of resistance to d4T. These findings highlight the complexity of the genetic pathways of d4T resistance and its phenotypic expression.


2004 ◽  
Vol 78 (2) ◽  
pp. 1012-1019 ◽  
Author(s):  
Clara E. Cases-González ◽  
Luis Menéndez-Arias

ABSTRACT A genetic screen based on the blue-white β-galactosidase complementation assay designed to detect G→A mutations arising during RNA-dependent DNA synthesis was used to compare the fidelity of mutant human immunodeficiency virus type 1 reverse transcriptases (RTs) with the mutations M230L and M230I with the wild-type enzyme, in the presence of biased deoxynucleoside triphosphate (dNTP) pools. The mutant RTs with the M230L and M230I changes were found to be 20 to 70 times less faithful than the wild-type RT in the presence of low [dCTP]/[dTTP] ratios but showed similar fidelity in assays carried out with equimolar concentrations of each nucleotide. Biased dNTP pools led to short tandem repeat deletions in the target sequence, which were also detectable with the assay. However, deletion frequencies were similar for all of the RTs tested. The reported data suggest that RT pausing due to the low dNTP levels available in the RT reaction mixture facilitates strand transfer, in a process that is not necessarily mediated by nucleotide misinsertion.


2006 ◽  
Vol 50 (7) ◽  
pp. 2553-2556 ◽  
Author(s):  
Marc Wirden ◽  
Bénédicte Roquebert ◽  
Anne Derache ◽  
Anne Simon ◽  
Claudine Duvivier ◽  
...  

ABSTRACT We analyzed 3,475 human immunodeficiency virus sequences and 241 therapeutic histories. The L74I mutation was carried by 7% of viruses. L74I was strongly associated with T215F, K70R, and V75M/S/T/A mutations and increased with the number of thymidine analog mutations. It seemed to be linked to the use of abacavir or efavirenz.


2011 ◽  
Vol 55 (12) ◽  
pp. 5723-5731 ◽  
Author(s):  
Inge Dierynck ◽  
Herwig Van Marck ◽  
Marcia Van Ginderen ◽  
Tim H. M. Jonckers ◽  
Madhavi N. L. Nalam ◽  
...  

ABSTRACTTMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively.In vitroresistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50= 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50= 258). The activity against a comprehensive panel of PI-resistant mutants and the limitedin vitroselection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.


1999 ◽  
Vol 179 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Elisabeth Menu ◽  
François‐Xavier M'bopi Kéou ◽  
Sylvie Lagaye ◽  
Serge Pissard ◽  
Philippe Mauclère ◽  
...  

2000 ◽  
Vol 74 (18) ◽  
pp. 8324-8334 ◽  
Author(s):  
Yuki Ohi ◽  
Jared L. Clever

ABSTRACT The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (−sssDNA) is transferred from the 5′ end to the 3′ end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5′, the 3′, or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5′ or the 3′ R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length −sssDNA and 3′ acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5′ or the 3′ R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5′, the 3′, or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the −sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5′ R.


Sign in / Sign up

Export Citation Format

Share Document