scholarly journals Friedreich’s Ataxia Variants I154F and W155R Diminish Frataxin-Based Activation of the Iron–Sulfur Cluster Assembly Complex

Biochemistry ◽  
2011 ◽  
Vol 50 (29) ◽  
pp. 6478-6487 ◽  
Author(s):  
Chi-Lin Tsai ◽  
Jennifer Bridwell-Rabb ◽  
David P. Barondeau
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1995-1995
Author(s):  
Michael Huang ◽  
Erika Becker ◽  
Megan Whitnall ◽  
Yohan Suryo Rahmanto ◽  
Prem Ponka ◽  
...  

Abstract Abstract 1995 Poster Board I-1017 We utilized the muscle creatine kinase conditional frataxin knockout mouse to elucidate how frataxin-deficiency alters iron metabolism. This is of significance since frataxin-deficiency leads to the neuro- and cardio-degenerative disease, Friedreich's ataxia. Using cardiac tissues, we demonstrate that frataxin-deficiency leads to down-regulation of key molecules involved in three mitochondrial utilization pathways: iron-sulfur cluster (ISC) synthesis (iron-sulfur cluster scaffold protein1/2 and the cysteine desulferase, Nfs1); mitochondrial-iron storage (mitochondrial ferritin); and heme synthesis (5-aminolevulinate dehydratase, coproporphyrinogen oxidase, hydroxymethylbilane synthase, uroporphyrinogen III synthase and ferrochelatase). This marked decrease in mitochondrial-iron utilization and resultant reduced release of heme and ISC from the mitochondrion could contribute to the excess mitochondrial-iron observed. Indeed, this effect is compounded by increased iron availability for mitochondrial uptake through: (1) transferrin receptor1 up-regulation that increases iron uptake from transferrin; (2) decreased ferroportin1 expression, limiting iron export; (3) increased expression of the heme catabolism enzyme, heme oxygenase1, and down-regulation of ferritin-H and —L, both of which likely lead to increased “free iron” for mitochondrial uptake; and (4) increased expression of the mammalian exocyst protein, Sec15l1, and the mitochondrial-iron importer, mitoferrin-2 (Mfrn2), that facilitate cellular iron uptake and mitochondrial-iron influx, respectively. This study enables construction of a model explaining the cytosolic iron-deficiency and mitochondrial-iron-loading in the absence of frataxin that is important for understanding the pathogenesis of Friedreich's ataxia. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 7 (12) ◽  
pp. 671 ◽  
Author(s):  
Xin Nie ◽  
Bernhard Remes ◽  
Gabriele Klug

A multitude of biological functions relies on iron-sulfur clusters. The formation of photosynthetic complexes goes along with an additional demand for iron-sulfur clusters for bacteriochlorophyll synthesis and photosynthetic electron transport. However, photooxidative stress leads to the destruction of iron-sulfur clusters, and the released iron promotes the formation of further reactive oxygen species. A balanced regulation of iron-sulfur cluster synthesis is required to guarantee the supply of this cofactor, on the one hand, but also to limit stress, on the other hand. The phototrophic alpha-proteobacterium Rhodobacter sphaeroides harbors a large operon for iron-sulfur cluster assembly comprising the iscRS and suf genes. IscR (iron-sulfur cluster regulator) is an iron-dependent regulator of isc-suf genes and other genes with a role in iron metabolism. We applied reporter gene fusions to identify promoters of the isc-suf operon and studied their activity alone or in combination under different conditions. Gel-retardation assays showed the binding of regulatory proteins to individual promoters. Our results demonstrated that several promoters in a sense and antisense direction influenced isc-suf expression and the binding of the IscR, Irr, and OxyR regulatory proteins to individual promoters. These findings demonstrated a complex regulatory network of several promoters and regulatory proteins that helped to adjust iron-sulfur cluster assembly to changing conditions in Rhodobacter sphaeroides.


2004 ◽  
Vol 279 (52) ◽  
pp. 53924-53931 ◽  
Author(s):  
Jonathan J. Silberg ◽  
Tim L. Tapley ◽  
Kevin G. Hoff ◽  
Larry E. Vickery

Sign in / Sign up

Export Citation Format

Share Document