scholarly journals Redox Properties of Human Medium-Chain Acyl-CoA Dehydrogenase, Modulation by Charged Active-Site Amino Acid Residues†

Biochemistry ◽  
1998 ◽  
Vol 37 (41) ◽  
pp. 14605-14612 ◽  
Author(s):  
Gina J. Mancini-Samuelson ◽  
Volker Kieweg ◽  
Kim Marie Sabaj ◽  
Sandro Ghisla ◽  
Marian T. Stankovich
2019 ◽  
Author(s):  
Moritz Senger ◽  
Viktor Eichmann ◽  
Konstantin Laun ◽  
Jifu Duan ◽  
Florian Wittkamp ◽  
...  

Hydrogenases are metalloenzymes that catalyse the interconversion of protons and molecular hydrogen, H2. [FeFe]-hydrogenases show particularly high rates of hydrogen turnover and have inspired numerous compounds for biomimetic H2 production. Two decades of research on the active site cofactor of [FeFe]-hydrogenases have put forward multiple models of the catalytic proceedings. In comparison, understanding of the catalytic proton transfer is poor. We were able to identify the amino acid residues forming a proton transfer pathway between active site cofactor and bulk solvent; however, the exact mechanism of catalytic proton transfer remained inconclusive. Here, we employ in situ IR difference spectroscopy on the [FeFe]-hydrogenase from Chlamydomonas reinhardtii evaluating dynamic changes in the hydrogen-bonding network upon catalytic proton transfer. Our analysis allows for a direct, molecular unique assignment to individual amino acid residues. We found that transient protonation changes of arginine and glutamic acid residues facilitate bidirectional proton transfer in [FeFe]-hydrogenases.<br>


2019 ◽  
Vol 123 (23) ◽  
pp. 4878-4887 ◽  
Author(s):  
Timofey E. Tyugashev ◽  
Yury N. Vorobjev ◽  
Alexandra A. Kuznetsova ◽  
Maria V. Lukina ◽  
Nikita A. Kuznetsov ◽  
...  

1995 ◽  
Vol 308 (3) ◽  
pp. 955-964 ◽  
Author(s):  
A M Kachurin ◽  
A M Golubev ◽  
M M Geisow ◽  
O S Veselkina ◽  
L S Isaeva-Ivanova ◽  
...  

alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide.


1999 ◽  
Vol 37 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Machhindra T. Janave ◽  
N.Krishnan Ramaswamy ◽  
P.Madhusudanan Nair

2003 ◽  
Vol 69 (4) ◽  
pp. 2349-2355 ◽  
Author(s):  
Yuji Nagata ◽  
Zbyněk Prokop ◽  
Soňa Marvanová ◽  
Jana Sýkorová ◽  
Marta Monincová ◽  
...  

ABSTRACT The homology model of protein Rv2579 from Mycobacterium tuberculosis H37Rv was compared with the crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26, and this analysis revealed that 6 of 19 amino acid residues which form an active site and entrance tunnel are different in LinB and Rv2579. To characterize the effect of replacement of these six amino acid residues, mutations were introduced cumulatively into the six amino acid residues of LinB. The sixfold mutant, which was supposed to have the active site of Rv2579, exhibited haloalkane dehalogenase activity with the haloalkanes tested, confirming that Rv2579 is a member of the haloalkane dehalogenase protein family.


Sign in / Sign up

Export Citation Format

Share Document