The Use of a High-Speed Vector Processor Machine for Chemical Kinetic Sensitivity Analysis

Author(s):  
DAVID EDELSON ◽  
LINDA C. KAUFMAN ◽  
DANIEL D. WARNER
Author(s):  
Usman Abubakar ◽  
Xiaoyuan Wang ◽  
Sayyed Haleem Shah ◽  
Sadiq Ur rahman

2011 ◽  
Vol 121-126 ◽  
pp. 4764-4769
Author(s):  
Ying Cai Yuan ◽  
Yan Li ◽  
Yi Ming Wang ◽  
Qiang Guo

High velocity and stability are the development trend and inevitable requirement, but the clearance would make the stability of mechanical system deceased, especially in high speed. To the folder mechanism with clearances in high velocity, combined with the definition of sensitivity and the kinematics analysis, the kinematics sensitivity analysis model is derived by the matrix analysis method. Through the sensitivity analysis model, it can be easy to get the relationship of the design variables and the mechanism’s robustness, which provides the base to design the folder mechanism in high velocity.


Author(s):  
Andrew P. Murray ◽  
Franc¸ois Pierrot

In this paper, we present the mechanical design of a spherical four-bar mechanism for performing a motion common in manufacturing and assembly processes. The mechanism is designed to create, in a single, smooth motion, the combined rotation of a body by 90 degrees about one axis with a 90 degree rotation about an axis perpendicular to the first. A spherical four-bar mechanism is pursued as the basis for the design because the reorientation is produced mechanically rather than via a control scheme typical when higher degree of freedom systems are utilized. The design initiates with the kinematic synthesis of the spherical mechanism to guide a body through two orientations. The next step in the design is to refine the spherical fourbar based on manufacturing and operational concerns. As one of the challenges of utilizing these four-bars is tuning the starting and ending angle for the mechanism’s motion, a sensitivity analysis is performed to gauge the needed accuracy. Finally, there are details and a discussion of the proposed mechanical design.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Jesse Schultz ◽  
David Griese ◽  
Jaehyung Ju ◽  
Prabhu Shankar ◽  
Joshua D. Summers ◽  
...  

This paper presents the energy absorption properties of hexagonal honeycomb structures of varying cellular geometries under high speed in-plane crushing. While the crushing responses in terms of energy absorption and densification strains have been extensively researched and reported, a gap is identified in the generalization of honeycombs with contr’olled and varying geometric parameters. This paper addresses this gap through a series of finite element (FE) simulations where the cell angle and the inclined wall thickness, are varied while maintaining a constant mass of the honeycomb structure. A randomly filled, nonrepeating design of experiments (DOEs) is generated to determine the effects of these geometric parameters on the output of energy absorbed and a statistical sensitivity analysis is used to determine the parameters significant for the crushing energy absorption of honeycombs. It is found that while an increase in the inclined wall thickness enhances the energy absorption of the structure, increases in either the cell angle or ratio of cell angle to inclined wall thickness have adverse effects on the output. Finally, the optimization results suggest that a cellular geometry with a positive cell angle and a high inclined wall thickness provides for maximum energy absorption, which is verified with a 6% error when compared to a FE simulation.


Sign in / Sign up

Export Citation Format

Share Document