Biodegradation of [3H]Poly(ε-caprolactone) in the Presence of Active Sludge Extracts

2001 ◽  
Vol 2 (2) ◽  
pp. 373-377 ◽  
Author(s):  
Stéphanie Ponsart ◽  
Jean Coudane ◽  
Benjamin Saulnier ◽  
Jean-Louis Morgat ◽  
Michel Vert
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 984
Author(s):  
Pedro Cisterna-Osorio ◽  
Claudia Calabran-Caceres ◽  
Giannina Tiznado-Bustamante ◽  
Nataly Bastias-Toro

This research studies the incidence of the type of substrate, soluble or particulate, in the emergence, development, and inhibition of bulking in activated sludge systems. It was evaluated using the sludge volume index (SVI), mixing liquor-suspended solids (MLSS), microscopic analysis of biomass, and effluent suspended solids (ESS). In the first experiment, four sequencing batch reactors (SBRs) were fed with soluble substrate at a fixed mass, while the mass of the particulate substrate varied, as those (saccharose mass/flour mass) ratios were 3:1, 3:2, 3:3 and 3:4., with a deficit ranging from 20 to 30% compared to the ratio recommended. The four SBRs have similar MLSS, IVL, and ESS. From day 30, with a deficit from 80 to 90%, the influents have ratios 1/1 and 1/2 until 48 days. The SBRs present IVL between 600 and 730 mL/g and ESS from 370 to 440 mg/L; unlike influents with ratios 1/3 and 1/4, they present IVL between 170 and 185 mL/g, and ESS from 260 to 270 mg/L. The favorable effect of particulate matter is categorical. In the second set of experiments, two SBRs were studied: SBR 1 fed with saccharose, and SBR 2 with flour; there is a lack of nutrients causing bulking in SBRs. Once the nutrient deficiency condition is changed in day 11 to excess, after 22 days, the SVI was 190 mL/g, ESS was 360 mg/L, and MLSS was 2000 mg/L for influents with saccharose; the influent with flour, with an SVI of 80 mL/g, ESS of 100 mg/L, and MLSS of 4000 mg/L, shows faster and more consistent recovery with the particulate substrate. Therefore, the proposal is to add particulate substrate-like flour to active sludge plants facing bulking. It is a clean, innocuous and sustainable alternative to processes that use chemical reagents.


Author(s):  
Amir Hajiali ◽  
Lacramioara Diana Robescu

In this research capability of biological treatment method via active sludge and aquatic fern evaluated in different operating conditions and they were optimized in order to remove Zn (II). A simple reactor performance for treatment of model and real wastewater on laboratory and semi-industrial scale was investigated. This refining process proceeded with special attention to the effect of solution pH-value, pollutant concentration, absorbent concentration and reaction time. The batch semi-industrial scale reactor represented over 90 % removal efficiency under pH-value of 6 and 5-5.5 for aquatic ferns and active sludge, respectively. Effective reaction times represented various durations for aquatic ferns and active sludge with respect of 120 minutes and 90 minutes. The two biological masses had the best performances with 6 g/l for aquatic ferns and 5 g/l for active sludge. In the presence of 5 ppm of Zn (II) as the objective heavy metal, both absorbents had over 93.2 % removal efficiencies. While obviously laboratory-scale attempts introduced higher acceptable reduction efficiencies via this economic applicable treatment method. Additionally, economic considerations clarified feasibility of this recommended simple method.


Soil Science ◽  
1983 ◽  
Vol 136 (4) ◽  
pp. 237-249 ◽  
Author(s):  
W. V. GERASIMOWICZ ◽  
D. M. BYLER ◽  
E. G. PIOTROWSKI

2001 ◽  
Vol 44 (10) ◽  
pp. 203-208 ◽  
Author(s):  
G.-H. Chen ◽  
S. Saby ◽  
M. Djafer ◽  
H.-K. Mo

This paper presents three new approaches to reduce excess sludge production in activated sludge systems: 1) modification of conventional activated sludge process with insertion of a sludge holding tank in the sludge return line; 2) chlorination of excess sludge so as to minimize excess sludge production; and 3) utilization of a metabolic uncoupler, 3, 3′, 4′, 5-Tetrachlorosalicylanilide (TCS) to maximize futile activity of sludge microorganisms thereby leading to a reduction of sludge growth. Pilot study was carried out to evaluate this modified activated sludge process (OSA). It has been confirmed that the OSA process is effective in reducing excess sludge; particularly when the ORP level in the sludge holding tank was kept at -250 mV, more than 50% of the excess sludge was reduced. This process can maintain the effluent quality and even perform with a better sludge settleability than a conventional system. Experimental work on the second approach showed that chlorination treatment of excess sludge at a chlorine dose of 0.066 g Cl2/g MLSS reduced the excess sludge by 60%, while concentration of THMS was found below 200 ppb in the treated sludge. However, such sludge chlorination treatment sacrificed sludge settleability. Thus, it is not feasible to introduce the chlorination step to a conventional system. The third approach confirmed that addition of TCS could reduce sludge growth effectively if the TCS concentration is greater than 0.4 ppm. A 0.8-ppm concentration of TCS actually reduced excess sludge by 45%. It was also experimentally demonstrated that presence of TCS increases the portion of active sludge microorganisms over the entire microbial population.


Sign in / Sign up

Export Citation Format

Share Document