‘Venus flytrap’ soft robot gets a grip

2017 ◽  
Vol 95 (22) ◽  
pp. 8-8
Keyword(s):  
2021 ◽  
Author(s):  
Jian Li ◽  
Jie Yan ◽  
Meizhen Huang ◽  
Yangwei Wang

Abstract The research of bionic soft robot is a complex system engineering, including soft matrix material, soft actuator, soft sensor and bionic control system. Unlike most animals, plants cannot move in whole voluntarily. However, for the purpose of energy and nutrition, various parts of the plant body also carry out various movements, which vary from millisecond to hour on a large time scale. As a result, Plants are considered a source of inspiration for innovative engineering solutions, and a growing number of researchers are investigating the mechanisms of plant movement and biomimetic research. In this paper, the biological morphology, microstructure and movement mechanism of Venus flytrap leaf were studied and analyzed, and a bionic flytrap grassland machine with chamber design was designed and manufactured. Firstly, according to the research report on the biological morphology, microstructure and movement mechanism of Venus flytrap, the idea of chamber design was determined. Based on this observation, we reconstructed the leaf model and bionic structure of Venus flytrap by reverse modeling. Based on the principle of turgor pressure deformation, the chamber design rules of bionic Venus flytrap blade were formulated and optimized with silica gel as the bulk material. The flow channel design of Venus flytrap blade was studied and explored. Finally, the bionic Venus flytrap leaf was made by 3D printing technology and silica gel casting process, and the two bionic leaves were clamped at a certain opening Angle. The bending performance of bionic flytrap blade and the flytrap closure experiment were studied by air pressure excitation. The experimental results show that the bionic Venus flytrap blade can complete bending and closing experiments, and the bionic Venus flytrap can complete the whole capturing process within 5s. The leaf opening Angle of the bionic Venus flytrap reaches 80 degrees, which fits well with the real Venus flytrap blade and meets the design requirements and bionic goals. Apparently, this study is the first to design the chamber of the bionic flytrap leaf, formulate rules, and study the possibility of its deformation. It provides a new idea for the study of the movement and deformation of plant leaves, and expands the application of bionic robots, especially the robot solutions for plant types.


Robotica ◽  
2021 ◽  
pp. 1-31
Author(s):  
Andrew Spielberg ◽  
Tao Du ◽  
Yuanming Hu ◽  
Daniela Rus ◽  
Wojciech Matusik

Abstract We present extensions to ChainQueen, an open source, fully differentiable material point method simulator for soft robotics. Previous work established ChainQueen as a powerful tool for inference, control, and co-design for soft robotics. We detail enhancements to ChainQueen, allowing for more efficient simulation and optimization and expressive co-optimization over material properties and geometric parameters. We package our simulator extensions in an easy-to-use, modular application programming interface (API) with predefined observation models, controllers, actuators, optimizers, and geometric processing tools, making it simple to prototype complex experiments in 50 lines or fewer. We demonstrate the power of our simulator extensions in over nine simulated experiments.


Nature ◽  
2021 ◽  
Vol 591 (7848) ◽  
pp. 66-71
Author(s):  
Guorui Li ◽  
Xiangping Chen ◽  
Fanghao Zhou ◽  
Yiming Liang ◽  
Youhua Xiao ◽  
...  

Author(s):  
Mingxia Liu ◽  
Shu Zhu ◽  
Yanjia Huang ◽  
Zihui Lin ◽  
Weiping Liu ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 732-737
Author(s):  
Zhiping Wang ◽  
Yicha Zhang ◽  
Gaofeng Li ◽  
Guoqing Jin ◽  
Alain Bernard

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anne Fabricant ◽  
Geoffrey Z. Iwata ◽  
Sönke Scherzer ◽  
Lykourgos Bougas ◽  
Katharina Rolfs ◽  
...  

AbstractUpon stimulation, plants elicit electrical signals that can travel within a cellular network analogous to the animal nervous system. It is well-known that in the human brain, voltage changes in certain regions result from concerted electrical activity which, in the form of action potentials (APs), travels within nerve-cell arrays. Electro- and magnetophysiological techniques like electroencephalography, magnetoencephalography, and magnetic resonance imaging are used to record this activity and to diagnose disorders. Here we demonstrate that APs in a multicellular plant system produce measurable magnetic fields. Using atomic optically pumped magnetometers, biomagnetism associated with electrical activity in the carnivorous Venus flytrap, Dionaea muscipula, was recorded. Action potentials were induced by heat stimulation and detected both electrically and magnetically. Furthermore, the thermal properties of ion channels underlying the AP were studied. Beyond proof of principle, our findings pave the way to understanding the molecular basis of biomagnetism in living plants. In the future, magnetometry may be used to study long-distance electrical signaling in a variety of plant species, and to develop noninvasive diagnostics of plant stress and disease.


Author(s):  
T.V. Truong ◽  
R.C. Mysa ◽  
T. Stalin ◽  
P.M. Aby Raj ◽  
P. Valdivia y Alvarado
Keyword(s):  

Author(s):  
Zach J. Patterson ◽  
Andrew P. Sabelhaus ◽  
Keene Chin ◽  
Tess Hellebrekers ◽  
Carmel Majidi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document