scholarly journals Structurally Diverse GABA Antagonists Interact Differently with Open and Closed Conformational States of the ρ1Receptor

2012 ◽  
Vol 3 (4) ◽  
pp. 293-301 ◽  
Author(s):  
Izumi Yamamoto ◽  
Jane E. Carland ◽  
Katherine Locock ◽  
Navnath Gavande ◽  
Nathan Absalom ◽  
...  
2021 ◽  
Vol 64 (2) ◽  
pp. 1180-1196
Author(s):  
David Vanda ◽  
Vittorio Canale ◽  
Severine Chaumont-Dubel ◽  
Rafał Kurczab ◽  
Grzegorz Satała ◽  
...  

1975 ◽  
Vol 145 (3) ◽  
pp. 417-429 ◽  
Author(s):  
J E Barnett ◽  
G D Holman ◽  
R A Chalkley ◽  
K A Munday

6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingmin Yuan ◽  
Zongyang Lv ◽  
Melanie J. Adams ◽  
Shaun K. Olsen

AbstractE1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1–E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1–E2–Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1–E2–ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1–E2–Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.


2020 ◽  
Vol 117 (32) ◽  
pp. 19228-19236
Author(s):  
Chengcheng Fan ◽  
Jens T. Kaiser ◽  
Douglas C. Rees

The ATP-binding cassette (ABC) transporter of mitochondria (Atm1) mediates iron homeostasis in eukaryotes, while the prokaryotic homolog fromNovosphingobium aromaticivorans(NaAtm1) can export glutathione derivatives and confer protection against heavy-metal toxicity. To establish the structural framework underlying theNaAtm1 transport mechanism, we determined eight structures by X-ray crystallography and single-particle cryo-electron microscopy in distinct conformational states, stabilized by individual disulfide crosslinks and nucleotides. AsNaAtm1 progresses through the transport cycle, conformational changes in transmembrane helix 6 (TM6) alter the glutathione-binding site and the associated substrate-binding cavity. Significantly, kinking of TM6 in the post-ATP hydrolysis state stabilized by MgADPVO4eliminates this cavity, precluding uptake of glutathione derivatives. The presence of this cavity during the transition from the inward-facing to outward-facing conformational states, and its absence in the reverse direction, thereby provide an elegant and conceptually simple mechanism for enforcing the export directionality of transport byNaAtm1. One of the disulfide crosslinkedNaAtm1 variants characterized in this work retains significant glutathione transport activity, suggesting that ATP hydrolysis and substrate transport by Atm1 may involve a limited set of conformational states with minimal separation of the nucleotide-binding domains in the inward-facing conformation.


Biochemistry ◽  
2007 ◽  
Vol 46 (50) ◽  
pp. 14567-14577 ◽  
Author(s):  
Daniela B. Ureta ◽  
Patricio O. Craig ◽  
Gabriela E. Gómez ◽  
José M. Delfino

Sign in / Sign up

Export Citation Format

Share Document