Predicting Lattice Energy of Organic Crystals by Density Functional Theory with Empirically Corrected Dispersion Energy

2005 ◽  
Vol 2 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Shaoxin Feng ◽  
Tonglei Li
2018 ◽  
Vol 74 (7) ◽  
pp. 797-806 ◽  
Author(s):  
Alex N. Manin ◽  
Alexander P. Voronin ◽  
Ksenia V. Drozd ◽  
Andrei V. Churakov ◽  
German L. Perlovich

New salt forms of the antioxidant drug emoxypine (EMX, 2-ethyl-6-methylpyridin-3-ol) with pharmaceutically acceptable maleic (Mlt), malonic (Mln) and adipic (Adp) acids were obtained {emoxypinium maleate, C8H12NO+·C4H3O4 −, [EMX+Mlt], emoxypinium malonate, C8H12NO+·C3H3O4 −, [EMX+Mln], and emoxypinium adipate, C8H12NO+·C6H9O4 −, [EMX+Adp]} and their crystal structures determined. The molecular packing in the three EMX salts was studied by means of solid-state density functional theory (DFT), followed by QTAIMC (quantum theory of atoms in molecules and crystals) analysis. It was found that the major contribution to the packing energy comes from pyridine–carboxylate and hydroxy–carboxylate heterosynthons forming infinite one-dimensional ribbons, with [EMX+Adp] additionally stabilized by hydrogen-bonded C(9) chains of Adp− ions. The melting processes of the [EMX+Mlt] (1:1), [EMX+Mln] (1:1) and [EMX+Adp] (1:1) salts were studied and the fusion enthalpy was found to increase with the increase of the calculated lattice energy. The dissolution process of the EMX salts in buffer (pH 7.4) was also studied. It was found that the formation of binary crystals of EMX with dicarboxylic acids increases the EMX solubility by more than 30 times compared to its pure form.


1998 ◽  
Vol 63 (8) ◽  
pp. 1223-1244 ◽  
Author(s):  
Cordula Rauwolf ◽  
Achim Mehlhorn ◽  
Jürgen Fabian

Weak interactions between organic donor and acceptor molecules resulting in cofacially-stacked aggregates ("CT complexes") were studied by second-order many-body perturbation theory (MP2) and by gradient-corrected hybrid Hartree-Fock/density functional theory (B3LYP exchange-correlation functional). The complexes consist of tetrathiafulvalene (TTF) and related compounds and tetracyanoethylene (TCNE). Density functional theory (DFT) and MP2 molecular equilibrium geometries of the component structures are calculated by means of 6-31G*, 6-31G*(0.25), 6-31++G**, 6-31++G(3df,2p) and 6-311G** basis sets. Reliable molecular geometries are obtained for the donor and acceptor compounds considered. The geometries of the compounds were kept frozen in optimizing aggregate structures with respect to the intermolecular distance. The basis set superposition error (BSSE) was considered (counterpoise correction). According to the DFT and MP2 calculations laterally-displaced stacks are more stable than vertical stacks. The charge transfer from the donor to the acceptor is small in the ground state of the isolated complexes. The cp-corrected binding energies of TTF/TCNE amount to -1.7 and -6.3 kcal/mol at the DFT(B3LYP) and MP2(frozen) level of theory, respectively (6-31G* basis set). Larger binding energies were obtained by Hobza's 6-31G*(0.25) basis set. The larger MP2 binding energies suggest that the dispersion energy is underestimated or not considered by the B3LYP functional. The energy increases when S in TTF/TCNE is replaced by O or NH but decreases with substitution by Se. The charge-transferred complexes in the triplet state are favored in the vertical arrangement. Self-consistent-reaction-field (SCRF) calculations predicted a gain in binding energy with solvation for the ground-state complex. The ground-state charge transfer between the components is increased up to 0.8 e in polar solvents.


2014 ◽  
Vol 92 (11) ◽  
pp. 1111-1117
Author(s):  
Xueli Zhang ◽  
Xuedong Gong

Nitrogen-rich 1,2,4-triazole (1) and 1,2,3-triazole (2) react as bases with the oxygen-rich acids HNO3 (a), HN(NO2)2 (b), and HClO4 (c) to produce energetic salts (1a, 1b, and 1c and 2a, 2b, and 2c, respectively) potentially applicable to composite explosives and propellants. In this study, these salts were studied with the dispersion-corrected density functional theory. For the isomers such as 1a and 2a, the more negative ΔrGm of the formation reaction leads to a higher thermally stable salt. The ability to form intramolecular hydrogen bonds predicted with the quantum theory of atoms in molecules has the order of 2 > 1. Different hydrogen bonds result in different second-order perturbation energies, redshifts in IR, and electron density differences. The charge transfer, binding energy, dispersion energy, lattice energy, and energy gap between frontier orbits in the salts of 1 are larger than those of 2, which is helpful for stabilizing the former, and 1 is more obviously stabilized than 2 by formation of salts. Different conformations of 1 and 2 hardly affect the frontier orbital distributions. Base 1 is a more preferred base than 2 to form salts.


2020 ◽  
pp. 11-18
Author(s):  
Punya Paudel ◽  
Krishna Raj Adhikari ◽  
Kapil Adhikari

Paracetamol (PCA) has two well-known polymorphic forms, monoclinic (form I) and orthorhombic (form II). The parallel packing of flat hydrogen bonded layers in the metastable form II results in compaction properties superior to the thermodynamic stable form I which contains corrugated hydrogen bonded layers of molecules. In this study, the structure of Paracetamol (PCA)-Oxalic acid (OXA) co-crystal has been analyzed and found layered structure similar to PCA form II which enhance ability to form tablet. The Density Functional Theory (DFT) has been conducted to find some physicochemical properties of co-crystal. It was observed that the lattice energy of co-crystal is more than that of PCA form II showing more stability on co-crystal. The energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO gap) in co-crystal was found less than PCA form II showing bigger enhancement of reactivity.


2014 ◽  
Vol 14 (10) ◽  
pp. 4997-5003 ◽  
Author(s):  
Mikhail V. Vener ◽  
Elena O. Levina ◽  
Oleg A. Koloskov ◽  
Alexey A. Rykounov ◽  
Alexander P. Voronin ◽  
...  

CrystEngComm ◽  
2014 ◽  
Vol 16 (31) ◽  
pp. 7162-7171 ◽  
Author(s):  
Mingtao Zhang ◽  
Tonglei Li

Conceptual density functional theory is exploited to extend the HSAB (hard and soft acids and bases) principle for investigating the locality and regioselectivity of intermolecular interactions in organic crystals.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Shabeer Ahmad Mian ◽  
Younas Khan

Marine mussels strongly adhere to various surfaces and endure their attachment under a variety of conditions. In order to understand the basic mechanism involved, we study the adsorption of L-dopa molecule on hydrophilic geminal and terminal isolated silanols of silica (001) surface. High content of modified amino acid L-dopa is found in the glue-like material secreted by the mussels through which it sticks to various surfaces under water. To understand the adsorption behavior, we have made use of periodic Density Functional Theory (DFT) study. The L-dopa molecule adheres to silica surfaces terminated with geminal and terminal silanols via its catechol part. In both cases, the adhesion is achieved through the formation of 4 H-bonds. A binding energy of 29.48 and 31.67 kcal/mol has been estimated, after the inclusion of dispersion energy, for geminal and terminal silanols of silica, respectively. These results suggest a relatively stronger adhesion of dopa molecule for surface with terminal isolated silanols.


2010 ◽  
Vol 88 (11) ◽  
pp. 1057-1062 ◽  
Author(s):  
Axel D. Becke ◽  
Alya A. Arabi ◽  
Felix O. Kannemann

In previous work, Kannemann and Becke [ J. Chem. Theory Comput. 5, 719 (2009) and J. Chem. Theory Comput. 6, 1081 (2010) ] have demonstrated that the generalized gradient approximations (GGAs) of Perdew and Wang for exchange [Phys. Rev. B 33, 8800 (1986)] and Perdew, Burke, and Ernzerhof for correlation [Phys. Rev. Lett. 77, 3865 (1996)] , plus the dispersion density functional of Becke and Johnson [J. Chem. Phys. 127, 154108 (2007)] , comprise a nonempirical density-functional theory of high accuracy for thermochemistry and van der Waals complexes. The theory is nonempirical except for two universal cutoff parameters in the dispersion energy. Our calculations so far have been grid-based and have employed the local density approximation (LDA) for the orbitals. In this work, we employ orbitals from self-consistent GGA calculations using Gaussian basis sets. The results, on a benchmark set of 65 van der Waals complexes, are similar to our grid-based post-LDA results. This work sets the stage for van der Waals force computations and geometry optimizations.


Sign in / Sign up

Export Citation Format

Share Document