marine mussels
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 62)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Xinguo Zhao ◽  
Shuge Sun ◽  
Wei Shi ◽  
Xuemei Sun ◽  
Yan Zhang ◽  
...  

The increasing underwater noise generated by anthropogenic activities has been widely recognized as a significant and pervasive pollution in the marine environment. Marine mussels are a family of sessile bivalves that attach to solid surfaces via the byssal threads. They are widely distributed along worldwide coastal areas and are of great ecological and socio-economic importance. Studies found that anthropogenic noise negatively affected many biological processes and/or functions of marine organisms. However, to date, the potential impacts of anthropogenic noise on mussel byssal attachment remain unknown. Here, the thick shell mussels Mytilus coruscus were exposed to an ambient underwater condition (∼50 dB re 1 μPa) or the playbacks of pile-driving noise (∼70 or ∼100 dB re 1 μPa) for 10 days. Results showed that the noise significantly reduced the secretion of byssal threads (e.g., diameter and volume) and weakened their mechanical performances (e.g., strength, extensibility, breaking stress, toughness and failure location), leading to a 16.95–44.50% decrease in mussel byssal attachment strength. The noise also significantly down-regulated the genes expressions of seven structural proteins (e.g., mfp-1, mfp-2, mfp-3, mfp-6, preCOL-P, preCOL-NG, and preCOL-D) of byssal threads, probably mediating the weakened byssal attachment. Given the essential functions of strong byssal attachment, the findings demonstrate that the increasing underwater anthropogenic noise are posing a great threat to mussel population, mussel-bed community and mussel aquaculture industry. We thus suggest that future work is required to deepen our understanding of the impacts of anthropogenic noise on marine invertebrates, especially these with limited locomotion ability, like bivalves.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bryan D. James ◽  
Kenneth M. Kimmins ◽  
Minh-Tam Nguyen ◽  
Alexander J. Lausch ◽  
Eli D. Sone

AbstractLike marine mussels, freshwater zebra and quagga mussels adhere via the byssus, a proteinaceous attachment apparatus. Attachment to various surfaces allows these invasive mussels to rapidly spread, however the adhesion mechanism is not fully understood. While marine mussel adhesion mechanics has been studied at the individual byssal-strand level, freshwater mussel adhesion has only been characterized through whole-mussel detachment, without direct interspecies comparisons on different substrates. Here, adhesive strength of individual quagga and zebra mussel byssal plaques were measured on smooth substrates with varying hydrophobicity—glass, PVC, and PDMS. With increased hydrophobicity of substrates, adhesive failures occurred more frequently, and mussel adhesion strength decreased. A new failure mode termed 'footprint failure' was identified, where failure appeared to be adhesive macroscopically, but a microscopic residue remained on the surface. Zebra mussels adhered stronger and more frequently on PDMS than quagga mussels. While their adhesion strengths were similar on PVC, there were differences in the failure mode and the plaque-substrate interface ultrastructure. Comparisons with previous marine mussel studies demonstrated that freshwater mussels adhere with comparable strength despite known differences in protein composition. An improved understanding of freshwater mussel adhesion mechanics may help explain spreading dynamics and will be important in developing effective antifouling surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. A. V. Burioli ◽  
M. Hammel ◽  
N. Bierne ◽  
F. Thomas ◽  
M. Houssin ◽  
...  

AbstractSome cancers have evolved the ability to spread from host to host by transmission of cancerous cells. These rare biological entities can be considered parasites with a host-related genome. Still, we know little about their specific adaptation to a parasitic lifestyle. MtrBTN2 is one of the few lineages of transmissible cancers known in the animal kingdom. Reported worldwide, MtrBTN2 infects marine mussels. We isolated MtrBTN2 cells circulating in the hemolymph of cancerous mussels and investigated their phenotypic traits. We found that MtrBTN2 cells had remarkable survival capacities in seawater, much higher than normal hemocytes. With almost 100% cell survival over three days, they increase significantly their chances to infect neighboring hosts. MtrBTN2 also triggered an aggressive cancerous process: proliferation in mussels was ~ 17 times higher than normal hemocytes (mean doubling time of ~ 3 days), thereby favoring a rapid increase of intra-host population size. MtrBTN2 appears to induce host castration, thereby favoring resources re-allocation to the parasites and increasing the host carrying capacity. Altogether, our results highlight a series of traits of MtrBTN2 consistent with a marine parasitic lifestyle that may have contributed to the success of its persistence and dissemination in different mussel populations across the globe.


2021 ◽  
Author(s):  
Elizabeth Gosling
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Menglu Zhu ◽  
Yi Shi ◽  
Yifan Shan ◽  
Junyan Guo ◽  
Xuelong Song ◽  
...  

AbstractPolydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. Graphical Abstract


Author(s):  
J. Herbert Waite ◽  
Matthew James Harrington

Over the last 15 years, the byssus of marine mussels (Mytilus spp.) has emerged as an important model system for the bio-inspired development and synthesis of advanced polymers and adhesives. But how did these seemingly inconsequential fibers that are routinely discarded in mussel hors d’oeuvres become the focus of intense international research. In the present review, we take a historical perspective to understand this phenomenon. Our purpose is not to review the sizeable literature of mussel-inspired materials as there are numerous excellent reviews that cover this topic in great depth. Instead, we explore how the byssus became a magnet for bio-inspired materials science, with a focus on the specific breakthroughs in the understanding of composition, structure, function and formation of the byssus achieved through fundamental scientific investigation. Extracted principles have led to bio-inspired design of novel materials with both biomedical and technical applications, including surgical adhesives, self-healing polymers, tunable hydrogels and even actuated composites. Continued study into the byssus of Mytilid mussels and other species will provide a rich source of inspiration for years to come.


Author(s):  
Maximiliano Cledon ◽  
Louis A Tremblay ◽  
Charles Griffiths ◽  
Mariem Fadhlaoui ◽  
Olivier Champeau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document