Binding Energies of Organic Charge-Transfer Complexes Calculated by First-Principles Methods

1998 ◽  
Vol 63 (8) ◽  
pp. 1223-1244 ◽  
Author(s):  
Cordula Rauwolf ◽  
Achim Mehlhorn ◽  
Jürgen Fabian

Weak interactions between organic donor and acceptor molecules resulting in cofacially-stacked aggregates ("CT complexes") were studied by second-order many-body perturbation theory (MP2) and by gradient-corrected hybrid Hartree-Fock/density functional theory (B3LYP exchange-correlation functional). The complexes consist of tetrathiafulvalene (TTF) and related compounds and tetracyanoethylene (TCNE). Density functional theory (DFT) and MP2 molecular equilibrium geometries of the component structures are calculated by means of 6-31G*, 6-31G*(0.25), 6-31++G**, 6-31++G(3df,2p) and 6-311G** basis sets. Reliable molecular geometries are obtained for the donor and acceptor compounds considered. The geometries of the compounds were kept frozen in optimizing aggregate structures with respect to the intermolecular distance. The basis set superposition error (BSSE) was considered (counterpoise correction). According to the DFT and MP2 calculations laterally-displaced stacks are more stable than vertical stacks. The charge transfer from the donor to the acceptor is small in the ground state of the isolated complexes. The cp-corrected binding energies of TTF/TCNE amount to -1.7 and -6.3 kcal/mol at the DFT(B3LYP) and MP2(frozen) level of theory, respectively (6-31G* basis set). Larger binding energies were obtained by Hobza's 6-31G*(0.25) basis set. The larger MP2 binding energies suggest that the dispersion energy is underestimated or not considered by the B3LYP functional. The energy increases when S in TTF/TCNE is replaced by O or NH but decreases with substitution by Se. The charge-transferred complexes in the triplet state are favored in the vertical arrangement. Self-consistent-reaction-field (SCRF) calculations predicted a gain in binding energy with solvation for the ground-state complex. The ground-state charge transfer between the components is increased up to 0.8 e in polar solvents.

2005 ◽  
Vol 04 (03) ◽  
pp. 377-388 ◽  
Author(s):  
V. NIRMALA ◽  
P. KOLANDAIVEL

Density functional theory and Møller–Plesset perturbation theory methods have been used to study the ring clusters of ( BN )n=1–10 employing 6-311++G** basis set. The binding energies have been corrected for the basis set superposition error (BSSE). Static polarizability of these ring clusters has been investigated. A simple expression for the size dependence of polarizability has been invoked, so that the same relation can be useful for predicting the polarizability of larger clusters. The topological properties were analyzed employing the Bader's atoms in molecules theory. A good correlation between the structural parameters and the properties of electron density is found. Localization and delocalization indices were also used for the analysis of molecular electronic structure by an electron pair perspective. The contribution of stereo electronic interactions to the molecular properties as a function of ring size is analyzed based on the natural bond orbital (NBO) analysis.


2010 ◽  
Vol 7 (3) ◽  
pp. 870-874 ◽  
Author(s):  
Navaratnarajah Kuganathan

Model calculations are performed to predict the nature of interaction between SWNT and a tripeptide (Lys-Trp-Lys) and to calculate the binding energies and charge transfer between these two species using density functional theory. DFT calculations indicate that the interaction is of a non covalent nature. Minimal charge transfer is observed between SWNT and Lys-Trp-Lys.


RSC Advances ◽  
2015 ◽  
Vol 5 (24) ◽  
pp. 18492-18500 ◽  
Author(s):  
Chaofan Sun ◽  
Dawei Qi ◽  
Yuanzuo Li ◽  
LinPo Yang

The ground state geometry, optical and charge transport properties of benzodifurandione-based PPV (BDPPV) have been studied with density functional theory methods.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108404-108410 ◽  
Author(s):  
Y. Y. Pan ◽  
J. Huang ◽  
Z. M. Wang ◽  
S. T. Zhang ◽  
D. W. Yu ◽  
...  

The ωB97X was the most reliable functional for the accurate description of HLCT state at ground state and excited state.


1996 ◽  
Vol 74 (6) ◽  
pp. 1005-1007 ◽  
Author(s):  
Delano P. Chong

Our recent procedure of computing accurate core-electron binding energies (CEBEs) with density-functional theory is applied to glycine conformers in this work. The procedure uses the unrestricted generalized transition-state model and a combined functional of Becke's 1988 exchange with Perdew's 1986 correlation. When a large basis set such as Dunning's correlation-consistent polarized valence quadruple zeta set is used, the average absolute deviation from experiment for the CEBEs of the most stable conformer of glycine is only 0.2 eV, compared with 18 eV for Koopmans' theorem. Key words: core-electron binding energies, density-functional theory, glycine.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Karakaya ◽  
Fatih Ucun ◽  
Ahmet Tokatlı

The optimized molecular structures and vibrational frequencies and also gauge including atomic orbital (GIAO)1H and13C NMR shift values of benzoylcholine chloride [(2-benzoyloxyethyl) trimethyl ammonium chloride] have been calculated using density functional theory (B3LYP) method with 6-31++G(d) basis set. The comparison of the experimental and calculated infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectra has indicated that the experimental spectra are formed from the superposition of the spectra of two lowest energy conformers of the compound. So, it was concluded that the compound simultaneously exists in two optimized conformers in the ground state. Also the natural bond orbital (NBO) analysis has supported the simultaneous exiting of two conformers in the ground state. The calculated optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies for both the lowest energy conformers were seen to be in a well agreement with the corresponding experimental data.


2008 ◽  
Vol 07 (03) ◽  
pp. 331-346 ◽  
Author(s):  
AMIT S. TIWARY ◽  
PARTHA SARATHI SENGUPTA ◽  
ASOK K. MUKHERJEE

Out of several plausible isomeric structures of the toluene–ICl charge transfer (CT) complex, the most feasible one was determined by a detailed ab initio and DFT study at the HF, B3LYP, and mPW1PW91 levels using 6-31++G(d, p) basis set. Potential energy surface scans were performed with six possible structures ( I and Cl facing the o-, m-, and p-carbon atoms of toluene separately); the structures at the local minima of the surfaces were subjected to frequency calculation and the ones having no negative frequency were accepted as the real structure in the ground state. These structures were then subjected to full optimization. It was observed that the I – Cl bond, with its I atom oriented toward the aromatic ring, stands vertically above a C -atom at the ortho or para positions, being inclined at about 9° to the line perpendicular to the aromatic ring. Complexation increases the I – Cl bond length. After correction for basis set superposition error through a counterpoise calculation, we conclude from the binding energy that the preferred structure is the one with ICl above the ortho C atom. The calculated binding energy closely matches the experimental free energy of complexation. The electronic CT transition energy (hν CT ) with this structure in the ground state was calculated in vacuo by the restricted configuration interaction singlets method and in carbontetrachloride medium by the time dependent density functional theory method under the polarizable continuum model. The value of hν CT obtained from the ground-to-excited state transition electric dipole moments of the complex, is close to (somewhat underestimated) the reported experimental value.


Sign in / Sign up

Export Citation Format

Share Document