Di-tert-butyl peroxide decomposition behind shock waves

1976 ◽  
Vol 54 (4) ◽  
pp. 581-585 ◽  
Author(s):  
David K. Lewis

The homogeneous, gas phase thermal decomposition of di-tert-butyl peroxide has been studied in a single pulse shock tube. Samples containing 0.05% to 0.5% reactant in argon were heated to 528–677 K at total pressures of about 1 atm. Acetone and ethane were the only significant products. The reaction obeyed first order kinetics. The Arrhenius parameters, log A (s−1) = 15.33 ± 0.50, Eact (kJ/mol) = 152.3 ± 5.8, are in agreement with the bulk of the earlier reported results of lower temperature work, and with a recently reported result obtained via the very low pressure pyrolysis technique. Indications from some of the earlier work that the A factor may decline at high temperatures are not supported by the present study.

1964 ◽  
Vol 17 (4) ◽  
pp. 406 ◽  
Author(s):  
GA Bottomley ◽  
GL Nyberg

The gas-phase thermal decomposition of dimethyldiazirine, (CH3)2CN2, at very slow rates has been investigated using precision gas-volumetric techniques previously applied to second virial coefficient studies. At 50-70� the first-order kinetics correspond to half-lives about 0.3-3.0 years. The present results, together with data obtained by other workers using conventional apparatus at 124-174�, fit a single log rate-reciprocal temperature activation energy equation.


1974 ◽  
Vol 52 (16) ◽  
pp. 2901-2905 ◽  
Author(s):  
Babatunde B. Adeleke ◽  
Sau-King Wong ◽  
Jeffrey K. S. Wan

The formation and the stability of some arylsilyl adducts of phenyl tert-butyl nitrone were studied in a photochemical system using di-tert-butyl peroxide as solvent. The β-proton splittings of all the arylsilyl adducts, ranging from 5.6 to 8.3 G, are relatively larger than their carbon analogs, which are usually less than 4 G. The arylsilyl adducts are found to decompose in di-tert-butyl peroxide solvent by a first-order kinetics. The activation energy involved in the decomposition of a series of arylsilyl adducts varies from about 14 to about 9 kcal/mol, as the size of the silyl group increases. In all cases, very low values of the A factors (between 106 and 1010) were observed.


1969 ◽  
Vol 47 (24) ◽  
pp. 4808-4809 ◽  
Author(s):  
C. K. Yip ◽  
H. O. Pritchard

The thermal decomposition of di-tert-butyl peroxide in the presence of propane has been studied at total pressures up to 100 atm. At the highest propane concentrations, the major product of the decomposition is tert-butyl alcohol, and extrapolation to infinite propane pressure indicates that the initial step in the peroxide decomposition is exclusively the formation of two tert-butoxy radicals. The activation energy for the abstraction of hydrogen from propane by t-BuO radicals is discussed.


1971 ◽  
Vol 24 (4) ◽  
pp. 771 ◽  
Author(s):  
NJ Daly ◽  
F Ziolkowski

Citraconic anhydride decomposes in the gas phase over the range 440- 490� to give carbon dioxide, carbon monoxide, and propyne which undergoes some polymerization to trimethylbenzenes. The decomposition obeys first-order kinetics, and the Arrhenius equation ������������������� k1 = 1015.64 exp(-64233�500/RT) (s-1) describes the variation of rate constant with temperature. The rate constant is unaffected by the addition of isobutene or by increase in the surface/volume ratio of the reaction vessel. The reaction appears to be unimolecular and if a diradical intermediate is involved it may not be fully formed in the transition state.


1968 ◽  
Vol 46 (16) ◽  
pp. 2721-2724 ◽  
Author(s):  
D. H. Shaw ◽  
H. O. Pritchard

The thermal decomposition of di-tert-butyl peroxide has been studied in the presence of carbon dioxide at total pressures from 0.05 to 15 atm and temperatures from 90–130 °C. The first-order rate constant for the decomposition is independent of total pressure in this range, with Arrhenius parameters E = 37.8 ± 0.3 kcal/mole and log A(s−1) = 15.8+0.2. A reevaluation of previous data on this reaction leads us to recommend E = 37.78 ± 0.06 kcal/mole and log A(s−1) = 15.80 ± 0.03 over the temperature range 90–350 °C; extension of this range to higher temperatures using a shock tube would be worthwhile.


2003 ◽  
Vol 95 (5) ◽  
pp. 1896-1900
Author(s):  
Wenfei Yan ◽  
Stephen B. Hall

Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting <1 s for bubbles with and without interfacial films and used P · V to evaluate Tg. P · V fell during and after the rapid compressions, consistent with reductions in n, the moles of gas phase molecules, because of increasing solubility in the subphase at higher P. As expected for a process with first-order kinetics, during 1 h after the rapid compression P · V decreased along a simple exponential curve. The temporal variation of n moles of gas was determined from P · V >10 min after the compression when the two phases should be isothermal. Back extrapolation of n then allowed calculation of Tg from P · V immediately after the compression. Our results indicate that for bubbles with or without interfacial films compressed to >3 atm within 1 s, the change in Tg is <2°C.


1992 ◽  
Vol 73 (5) ◽  
pp. 1939-1945 ◽  
Author(s):  
E. M. Postlethwait ◽  
S. D. Langford ◽  
A. Bidani

We previously showed, during quasi-steady-state exposures, that the rate of inhaled NO2 uptake displays reaction-mediated characteristics (J. Appl. Physiol. 68: 594–603, 1990). In vitro kinetic studies of pulmonary epithelial lining fluid (ELF) demonstrated that NO2 interfacial transfer into ELF exhibits first-order kinetics with respect to NO2, attains [NO2]-dependent rate saturation, and is aqueous substrate dependent (J. Appl. Physiol. 71: 1502–1510, 1991). We have extended these observations by evaluating the kinetics of NO2 gas phase disappearance in isolated ventilating rat lungs. Transient exposures (2–3/lung at 25 degrees C) employed rebreathing (NO2-air) from a non-compliant continuously stirred closed chamber. We observed that 1) NO2 uptake rate is independent of exposure period, 2) NO2 gas phase disappearance exhibited first-order kinetics [initial rate (r*) saturation occurred when [NO2] > 11 ppm], 3) the mean effective rate constant (k*) for NO2 gas phase disappearance ([NO2] < or = 11 ppm, tidal volume = 2.3 ml, functional residual capacity = 4 ml, ventilation frequency = 50/min) was 83 +/- 5 ml/min, 4) with [NO2] < or = 11 ppm, k* and r* were proportional to tidal volume, and 5) NO2 fractional uptakes were constant across [NO2] (< or = 11 ppm) and tidal volumes but exceeded quasi-steady-state observations. Preliminary data indicate that this divergence may be related to the inspired PCO2. These results suggest that NO2 reactive uptake within rebreathing isolated lungs follows first-order kinetics and displays initial rate saturation, similar to isolated ELF.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 63 (2) ◽  
pp. 542-548 ◽  
Author(s):  
R. A. Back ◽  
S. Yamamoto

The photolysis of glyoxylic acid vapour has been studied at five wavelengths, 382, 366, 346, 275, and 239 nm, and pressures from about 1 to 6 Torr, at a temperature of 355 K. Major products were CO2 and CH2O, initially formed in almost equal amounts, while minor products were CO and H2. Except at 382 nm, the system was complicated by the rapid secondary photolysis of CH2O. Three primary processes are suggested, each involving internal H-atom transfer followed by dissociation.The absorption spectrum is reported and shows the three distinct absorption systems. A finely-structured spectrum from about 320 to 400 nm is attributed to a transition to the first excited π* ← n+ singlet state; a more diffuse absorption ranging from about 290 nm to a maximum at 239 nm is assigned to the π* ← n− state, while a much stronger absorption beginning below 230 nm is attributed to the π* ← π transition. Product ratios vary with wavelength and depend on which excited state is involved.The thermal decomposition was studied briefly in a static system at temperatures from 470 to 710 K and pressures from 0.4 to 8 Torr. Major products were again CO2 and CH2O, but the latter was always less than stoichiometric. First-order rate constants for the apparently homogeneous formation of CO2 are described by Arrhenius parameters log A (s−1) = 7.80 and E = 30.8 kcal/mol. Carbon monoxide and H2 were minor products, and the CO/CO2 ratio increased with increasing temperature and showed some surface enhancement at lower temperatures. The SF6-sensitized thermal decomposition of glyoxylic acid, induced by a pulsed CO2 laser, was briefly studied, with temperatures estimated to be in the 1100–1600 K range, and the CO/CO2 ratio increased with increasing temperature, continuing the trend observed in the static system.


1974 ◽  
Vol 5 (38) ◽  
pp. no-no
Author(s):  
DAVID LEWIS ◽  
MARK KEIL ◽  
MICHAEL SARR

Sign in / Sign up

Export Citation Format

Share Document