Fuel Spray and Exhaust Emission Characteristics of an Undiluted Soybean Oil Methyl Ester in a Diesel Engine

2010 ◽  
Vol 24 (11) ◽  
pp. 6172-6178 ◽  
Author(s):  
Su Han Park ◽  
Hyung Jun Kim ◽  
Chang Sik Lee
Author(s):  
Bobbili Prasadarao ◽  
Aditya Kolakoti ◽  
Pudi Sekhar

: This paper presents the production of biodiesel from three different non edible oils of Pongamia, Mahua and Jatropha as an alternative fuel for diesel engine. Biodiesel is produced by followed transesterification process, using catalyst sodium hydroxide (NaOH) and methyl alcohol (CH3OH). A single cylinder four stroke three-wheeler auto diesel engine is used to evaluate the exhaust emission characteristics at a constant speed of 1500rpm with varying loads. Diesel as a reference fuel and cent percent of Pongamia Methyl Ester (PME), Mahua Methyl Ester (MME) and Jatropha Methyl Ester (JME) are used as an alternative fuel. The physicochemical properties of biodiesels are within the limits of international standards (ASTM D6751) noticeably. The results of tested biodiesels offer low exhaust emissions compared to diesel fuel, owing to presence of molecular oxygen and high cetane number. At maximum load the NOx emission reduced by 18.41% for JME, 17.46% for MME and 7.61% for PME. Low levels of CO emissions are recorded for JME (66%) followed by MME (33%) and PME (22%). Unburnt hydrocarbon emissions were reduced by 85.75% for JME and MME, for PME 14.28% reduction is observed. Exhaust smoke emissions are also reduced for PME and MME by 18.84%, for JME 14.49%. As a conclusion, it is observed that all the methyl esters exhibit significant reduction in harmful exhaust emissions compared to diesel fuel and JME is noted as a better choice.


Author(s):  
Seung Hyun Yoon ◽  
Su Han Park ◽  
Hyun Kyu Suh ◽  
Chang Sik Lee

An experiment was performed to analyze the effects of biodiesel-ethanol blended fuel spray on the combustion and exhaust emission characteristics of a single-cylinder common-rail diesel engine. To analyze the macroscopic and microscopic characteristics of biodiesel blended fuel spray, measurements of the injection rate, droplet diameter, and spray tip penetration were taken using an injection rate meter, spray visualization and a droplet measuring system. The combustion, exhaust emission characteristics and size distributions of particulate matter were determined for various engine operating conditions using biodiesel-ethanol blends, and the results were compared to those of conventional diesel fuel. In this investigation, the measured results of biodiesel-ethanol blended fuels show that the Sauter mean diameter (SMD) decreased with an increase of relative velocity between the injected fuel and ambient gas. Comparing the combustion characteristics of diesel fuel and biodiesel-ethanol blended fuels, both diesel and blended fuel showed similar trends in combustion pressure and the rate of heat release. However, the combustion of biodiesel-ethanol blends had lower combustion characteristics such as combustion pressures and heat release rates than those of diesel fuel because of their lower heating values. In the case of exhaust gas recirculation (EGR), the indicated specific NOx (ISNOx), and soot concentrations were lower than those of conventional diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document