Fast Pyrolysis of Biomass in Pyrolysis Gas: Fractionation of Pyrolysis Vapors Using a Spray of Bio-oil

2012 ◽  
Vol 26 (5) ◽  
pp. 2962-2967 ◽  
Author(s):  
Chih-Chiang Chang ◽  
Seng-Rung Wu ◽  
Chi-Cheng Lin ◽  
Hou-Peng Wan ◽  
Hom-Ti Lee
2020 ◽  
Vol 14 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Shuangxia Yang ◽  
Xiaodong Zhang ◽  
Feixia Yang ◽  
Baofeng Zhao ◽  
Lei Chen ◽  
...  

The objective of this study is to catalytically upgrade fast pyrolysis vapors of sawdust using various Fe-based catalysts for producing phenolic-rich bio-oil by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique. A variety of parameters, including support characteristic, calcination temperature, pyrolysis temperature, as well as the catalyst-to-biomass ratio during the pyrolysis process were evaluated for their effects on product distribution of bio-oil. GC-MS analysis showed that compared to Fe–Mg and Fe–Al catalysts, the developed Fe–Ca catalyst significantly promoted the formation of phenols and its derivatives. The phenolic concentration declined with increasing calcination temperature and pyrolysis temperature, while increased monotonically along with increasing catalyst-to-biomass ratio. The phenolics concentration was high upto 81% (peak area) under optimum conditions of calcination temperature of 500 °C, pyrolysis temperature of 600 °C and catalyst-to-biomass ratio of 10. At higher catalyst-to-biomass ratio of 20, phenolics (88.03% in peak area) and hydrocarbons (including 7.86% of aromatics and 4.1% aliphatics) were the only two components that can be detected, with all the acids, aldehydes and ketones completely eliminated. This indicated the excellent capability of developed Fe–Ca catalyst in promoting the decomposition of lignin in biomass to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose.


2010 ◽  
Vol 38 (5) ◽  
pp. 554-559 ◽  
Author(s):  
Jun DU ◽  
Ping LIU ◽  
Zuo-hua LIU ◽  
Da-gui SUN ◽  
Chang-yuan TAO

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3474 ◽  
Author(s):  
Yichen Liu ◽  
James J. Leahy ◽  
Jacek Grams ◽  
Witold Kwapinski

Fast pyrolysis of Miscanthus, its hydrolysis residue and lignin were carried with a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) followed by online vapor catalytic upgrading with sulfated ZrO2, sulfated TiO2 and sulfated 60 wt.% ZrO2-TiO2. The most evident influence of the catalyst on the vapor phase composition was observed for aromatic hydrocarbons, light phenols and heavy phenols. A larger amount of light phenols was detected, especially when 60 wt.% ZrO2-TiO2 was present. Thus, a lower average molecular weight and lower viscosity of bio-oil could be obtained with this catalyst. Pyrolysis was also performed at different pressures of hydrogen. The pressure of H2 has a great effect on the overall yield and the composition of biomass vapors. The peak area percentages of both aromatic hydrocarbons and cyclo-alkanes are enhanced with the increasing of H2 pressure. The overall yields are higher with the addition of either H2 or sulfated catalysts. This is beneficial as phenols are valuable chemicals, thus, increasing the value of bio-oil. The results show that the hydrolysis residue has the potential to become a resource for phenol production.


2020 ◽  
Vol 14 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Fanjun Meng ◽  
Qiaoyan Shang ◽  
Dongliang Hua ◽  
Lei Chen ◽  
Laizhi Sun ◽  
...  

Seed-induced synthesis of ZSM-5 aggregates was carried out without organic templates. The prepared ZSM-5 aggregates were used upgrading polar sawdust-derived pyrolytic vapors for the selective production of naphthalene and alkyl naphthalene. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were conducted to analyze the pyrolytic product distribution and evaluate the catalyst performance. Due to the mesopores and proper acidities of ZSM-5 aggregates, the yield of naphthalene and methylnaphthalene over ZSM-5 aggregates were 36.0 and 123.7 mg/g, which were 2.7 and 2.6 times of those respectively over the commercial ZSM-5. The total selectivities of naphthalene and alkyl naphthalene could reach 61.56%.


2012 ◽  
Vol 512-515 ◽  
pp. 338-342 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

In the preparation of hydrogen, the bio-oil from pyrolysis of biomass must be further upgraded (catalytic steam reforming)SO as to improve its quality.However the catalyst used in the steam reforming reaction is easy to lose its activity due to being coked' SO that it is important to study the coke formation and its efects on the catalyst activity in the steam reforming process.Fourier Transform Infrared Spectroscopy were used to analyze the precursor of coke on the catalyst Ni/MgO-La2O3-Al2O3 used in steam reforming reaction and the mechanism of coking Was also discussed based on it.The results indicate that precursors of coke deposited inside the pore of the molecular sieve are mainly paraffin, alcohols, aldehydes and ketones, and aromatic compounds.


2014 ◽  
Vol 86 (5) ◽  
pp. 859-865 ◽  
Author(s):  
Andrea de Rezende Pinho ◽  
Marlon Brando Bezerra de Almeida ◽  
Fabio Leal Mendes ◽  
Vitor Loureiro Ximenes

AbstractThis paper shows how some existing refining technologies such as fluid catalytic cracking (FCC) can be modified to process bio-oil, derived from agricultural lignocellulosic wastes such as the sugar cane straw. Tests carried out in demonstration scale (150 kg/h) show the potential of these alternative materials to produce lignocellulosic gasoline or aromatic compounds, suitable to the petrochemical industry.


Sign in / Sign up

Export Citation Format

Share Document