pH and ionic strength effects on nickel-fulvic acid dissociation kinetics

1990 ◽  
Vol 24 (4) ◽  
pp. 583-588 ◽  
Author(s):  
Stephen E. Cabaniss
1975 ◽  
Vol 53 (20) ◽  
pp. 2979-2984 ◽  
Author(s):  
Cooper H. Langford ◽  
Tahir R. Khan

The first report of a rate of binding of a metal ion (Fe3+) by a soluble fulvic acid is derived from stopped flow measurements. The rate of complex formation is normal in Wilkins' sense and similar to that for sulfosalicylic acid. Dissociation is slow (t1/2 > 10 s). The binding of Fe3+ by the fulvic acid in acid solution, pH = 1–2.5, was investigated by kinetic analysis in which the reaction of free Fe3+ with sulfosalicylic acid was followed by stopped flow spectrophotometry on a time scale short compared to release of Fe3+ by fulvic acid. Conditional equilibrium constants found were 1.5 ± 0.3 × 104 at pH = 1.5 and 2.5, and 2.8 ± 0.3 × 103 at pH = 1.0 at 25 °C (ionic strength 0.1).


2020 ◽  
Vol 108 (7) ◽  
pp. 591
Author(s):  
Guodong Sheng ◽  
Jun Hu ◽  
Han Jing ◽  
Shitong Yang ◽  
Xuemei Ren ◽  
...  

Bioanalysis ◽  
2020 ◽  
Author(s):  
Gregor Jordan ◽  
Alexander Pöhler ◽  
Florence Guilhot ◽  
Meike Zaspel ◽  
Roland F Staack

Aim: Antidrug antibody (ADA) assessment may be challenged in studies that involve the administration of high doses of biotherapeutics and/or with long half-lives. In such cases, ADA assays with optimized drug tolerance are desired. Material & Methods: We evaluated the use of MgCl2 to develop high ionic strength dissociation assays in two investigational examples (bridging enzyme-linked immunosorbent ADA assays) to attain high drug tolerance while maintaining best possible structural integrity of ADAs. Results: Both ADA-bridging assays treated with MgCl2 showed improved drug tolerance and higher signal-to-blank values compared with overnight incubation or acid treatment. Conclusion: The use of MgCl2 treatment in ADA-bridging assays provides a sensitive, drug tolerant and easy-to-use alternative in cases where acid dissociation is not possible or unwanted.


2010 ◽  
Vol 98 (1) ◽  
Author(s):  
Qiao Hui Fan ◽  
M. L. Zhang ◽  
Y. Y. Zhang ◽  
K. F. Ding ◽  
Z. Q. Yang ◽  
...  

2007 ◽  
Vol 4 (3) ◽  
pp. 183 ◽  
Author(s):  
Thomas G. Bell ◽  
Martin T. Johnson ◽  
Timothy D. Jickells ◽  
Peter S. Liss

Environmental context. Quantifying ammonia concentrations in natural waters is important for our understanding of environmental processes that relate, in particular, to aquaculture toxicity and to the transfer of gaseous ammonia into the atmosphere where it plays a role in new particle formation and climate regulation. The proportion of ammonia present in natural waters is determined in part by variations in temperature and salinity. This work identifies that a previous equation for predicting ammonia concentrations over natural temperature and salinity ranges is incorrect and suggests alternative, more appropriate equations. A more accurate estimation of environmental ammonia concentrations is essential if improved estimates are to be made of the flux of ammonia into the atmosphere and the level of ammonia toxicity within aquacultures. Abstract. The equilibrium between ammonia (NH3) and ammonium (NH4+) in aqueous solution is a function of temperature, pH and the ionic strength of the solution. Here we reveal a 30-year-old error in published work on the thermodynamics of ammonium dissociation in seawater, which has propagated throughout the literature. The work in question[1] [K. H. Khoo, C. H. Culberson, R. G. Bates, J. Solution Chem. 1977, 6, 281] presents an incorrect expression for the variation of the acid dissociation coefficient (Ka) of ammonium with temperature and ionic strength. We detail the error and reveal that it can lead to as much as a 500% overestimation in calculated NH3 concentration under environmental conditions. This finding is highly relevant, particularly for studies of ammonia toxicity and air–sea ammonia exchange. In addition, we recommend two expressions that better reproduce previous experimental work: (i) taken from the work of Johansson and Wedborg,[2] and (ii) our own derivation using the dataset of Khoo et al.[1]


1977 ◽  
Vol 55 (17) ◽  
pp. 3166-3171 ◽  
Author(s):  
Thomas Wilson Swaddle

For the aquation of (CH3NH2)5RhCl2+, the first order rate coefficients are represented by ΔHaq* = 101.9 kJ mol−1 and ΔSaq* = −50.2 JK−1 mol−1 in 0.1 M HClO4, while for base hydrolysis the rate is first order in [(CH3NH2)5RhCl2+] and [OH−] at ionic strength 0.10 M and the rate coefficients (in M−1 s−1) are represented by ΔHOH*> = 108.6 kJ mol−1 and ΔSOH* = 74.1 J K−1 mol−1. Acid dissociation constants are reported for (RNH2)5MOH23+ (R = H or CH3; M = Rh or Co), and these, combined with spectral data, show CH3NH2 to be a poorer electron donor than NH3 in complexes of this type, contrary to expectations. The comparative kinetics of reactions of (RNH2)5MCl2+ support the assignment of an Ia mechanism to aquation when M = Rh or Cr, Id to aquation when M = Co, and Dcb for base hydrolysis in all these cases.


2005 ◽  
Vol 39 (14) ◽  
pp. 5319-5326 ◽  
Author(s):  
Iso Christl ◽  
Axel Metzger ◽  
Ilona Heidmann ◽  
Ruben Kretzschmar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document