Distribution of Volatile Organic Compounds over a Semiconductor Industrial Park in Taiwan

2005 ◽  
Vol 39 (4) ◽  
pp. 973-983 ◽  
Author(s):  
Kong-Hwa Chiu ◽  
Ben-Zen Wu ◽  
Chih-Chung Chang ◽  
Usha Sree ◽  
Jiunn-Guang Lo
Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 380 ◽  
Author(s):  
Ta-Yuan Chang ◽  
Chin-Lin Liu ◽  
Kuei-Hung Huang ◽  
Hsien-Wen Kuo

This study aimed to determine indoor and outdoor levels of volatile organic compounds (VOCs) and to assess potential risks among residents living in the vicinity of an optoelectronics industrial park in 2006–2007. We used steel canisters to collect 72 indoor samples and 80 outdoor samples over 24 h. Gas chromatography with a mass-selective detector was used for qualitative and quantitative analyses. The amounts of time residents spent doing activities in different microenvironments were determined by the self-administered questionnaire. The chronic hazard index (HIc) and cancer risk were applied to assess the non-carcinogenic and carcinogenic risks of VOCs among residents. Four VOCs of ethanol (indoor: 77.8 ± 92.8 μg/m3; outdoor: 26.8 ± 49.6 μg/m3), toluene (67.0 ± 36.7 μg/m3; 56.9 ± 19.0 μg/m3), m/p-xylene (50.8 ± 66.1 μg/m3; 21.2 ± 20.3 μg/m3), and acetone (37.7 ± 27.5 μg/m3; 25.8 ± 9.8 μg/m3) were identified as dominant components in both the indoor and outdoor environments. Total VOCs and six VOCs of benzene, toluene, ethylbenzene, m/p-xylene, o-xylene, and ethanol in indoor sites were significantly higher than those in outdoor sites (all p-values < 0.05). All estimated HIc values were less than unity and the cancer risk of benzene exposure was 1.8 × 10−4 (range: 9.3 × 10−5 to 3.4 × 10−4) based on resident time-weighted patterns. Strategies to reduce benzene exposure should be implemented to protect public health.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5988
Author(s):  
Rongrong Lei ◽  
Yamei Sun ◽  
Shuai Zhu ◽  
Tianqi Jia ◽  
Yunchen He ◽  
...  

The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22–5449.21 μg L−1, ND–52.20 ng g−1, 21.53 ng g−1, and ND–11.58 ng g−1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1–3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.


2010 ◽  
Vol 60 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Ta-Yuan Chang ◽  
Shen-Ju Lin ◽  
Ruei-Hao Shie ◽  
Shih-Wei Tsai ◽  
Hui-Tsung Hsu ◽  
...  

2015 ◽  
Vol 73 (5) ◽  
pp. 1175-1189 ◽  
Author(s):  
Benhua Liu ◽  
Yuehua Li ◽  
Jianfeng Ma ◽  
Linxian Huang ◽  
Liang Chen

China is suffering from serious water and soil pollution, especially in the North China Plain. This work investigated semi-volatile organic compounds (SVOCs) in surface water, groundwater and soil within a chemical industrial park in Eastern China, for which the volatile organic compound (VOC) results have been previously reported. A total of 20 samples were collected from the field, and analyzed in the laboratory. A 100% detection frequency of SVOCs in samples from this chemical industrial park was observed (same as VOCs). Moreover, the detection frequency of 113 SVOCs in each sample reached 15.93, 12.39 and 20.35% for surface water, groundwater and soil, respectively. The most detected SVOCs in the park included N-containing SVOCs, polycyclic aromatic hydrocarbons, phthalates, organic pesticides and polychlorodiphenyls. The elevated detecting frequencies and concentration levels of SVOCs identified in the groundwater were attributed to the intensive chemical production activities in the park. In addition, the agricultural activities in the area might also have contributed to the SVOCs to the groundwater. The results of VOCs and SVOCs from this and previous studies suggest that the groundwater in this industrial park has been severely contaminated, and the contamination likely spreads beyond the park. Imminent hydrogeological assessments and remedial actions are warranted to eliminate the source and mitigate the potential plume expansion beyond the park boundary.


Sign in / Sign up

Export Citation Format

Share Document