chlorinated volatile organic compounds
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 22)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
Tian Chang ◽  
Chuanlong Ma ◽  
Anton Yu Nikiforov ◽  
Savita K.P. Veerapandian ◽  
Nathalie De Geyter ◽  
...  

Abstract In this study, a multi-pin-to-plate negative glow discharge reactor was employed to degrade the hazardous compound, trichloroethylene (TCE). The response surface methodology (RSM) was applied to examine the influences of various process factors (relative humidity (RH), gas flow rate, and discharge power) on the TCE decomposition process, with regard to the TCE removal efficiency, CO2 and CO selectivities. The variance analysis was used to estimate the significance of the single process factors and their interactions. It has been proved that the discharge power had the utmost influential impact on the TCE removal efficiency, CO2 and CO selectivities, subsequently the gas flow rate, and finally RH. Under the optimal conditions with 20.83% RH, 2 W discharge power and 0.5 L·min–1 gas flow rate, the optimal TCE removal efficiency (86.05%), CO2 selectivity (8.62%), and CO selectivity (15.14%) were achieved. In addition, a possible TCE decomposition pathway was proposed based on the investigation of byproducts identified in the exhaust gas of the NTP reactor. This work paves a way for the control of chlorinated volatile organic compounds.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 119
Author(s):  
Yu Huang ◽  
Shiyue Fang ◽  
Mingjiao Tian ◽  
Zeyu Jiang ◽  
Yani Wu ◽  
...  

Developing economical and robust catalysts for the highly selective and stable destruction of chlorinated volatile organic compounds (CVOCs) is a great challenge. Here, hollow nanosphere-like VOx/CeO2 catalysts with different V/Ce molar ratios were fabricated and adopted for the destruction of1,2–dichloroethane (1,2–DCE). The V0.05Ce catalyst possessed superior catalytic activity, reaction selectivity, and chlorine resistance owing to a large number of oxygen vacancies, excellent low-temperature redox ability, and chemically adsorbed oxygen (O− and O2−) species mobility. Typical chlorinated byproducts (CHCl3, CCl4, C2HCl3, and C2H3Cl3) derived from the cleavage of C–Cl and C–C bonds of 1,2–DCE were detected, which could be effectively inhibited by the abundant acid sites and the strong interactions of VOx species with CeO2. The presence of water vapor benefited the activation and deep destruction of 1,2–DCE over V0.05Ce owing to the efficient removal of Cl species from the catalyst surface.


Author(s):  
Pengfei Sun ◽  
Jingkun Chen ◽  
Shuaiying Zai ◽  
Shan Gao ◽  
Xiaole Weng ◽  
...  

Industrial catalysis is confronted with the common problem of catalyst deactivation.


Sign in / Sign up

Export Citation Format

Share Document