Start-Up, Microbial Community Analysis and Formation of Aerobic Granules in atert-Butyl Alcohol Degrading Sequencing Batch Reactor

2005 ◽  
Vol 39 (15) ◽  
pp. 5774-5780 ◽  
Author(s):  
Stephen Tiong-Lee Tay ◽  
Wei-Qin Zhuang ◽  
Joo-Hwa Tay
2004 ◽  
Vol 70 (11) ◽  
pp. 6767-6775 ◽  
Author(s):  
He-Long Jiang ◽  
Joo-Hwa Tay ◽  
Abdul Majid Maszenan ◽  
Stephen Tiong-Lee Tay

ABSTRACT Aerobic granules are self-immobilized aggregates of microorganisms and represent a relatively new form of cell immobilization developed for biological wastewater treatment. In this study, both culture-based and culture-independent techniques were used to investigate the bacterial diversity and function in aerobic phenol- degrading granules cultivated in a sequencing batch reactor. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes demonstrated a major shift in the microbial community as the seed sludge developed into granules. Culture isolation and DGGE assays confirmed the dominance of β-Proteobacteria and high-G+C gram-positive bacteria in the phenol-degrading aerobic granules. Of the 10 phenol-degrading bacterial strains isolated from the granules, strains PG-01, PG-02, and PG-08 possessed 16S rRNA gene sequences that matched the partial sequences of dominant bands in the DGGE fingerprint belonging to the aerobic granules. The numerical dominance of strain PG-01 was confirmed by isolation, DGGE, and in situ hybridization with a strain-specific probe, and key physiological traits possessed by PG-01 that allowed it to outcompete and dominate other microorganisms within the granules were then identified. This strain could be regarded as a functionally dominant strain and may have contributed significantly to phenol degradation in the granules. On the other hand, strain PG-08 had low specific growth rate and low phenol degradation ability but showed a high propensity to autoaggregate. By analyzing the roles played by these two isolates within the aerobic granules, a functional model of the microbial community within the aerobic granules was proposed. This model has important implications for rationalizing the engineering of ecological systems.


2012 ◽  
Vol 34 (5) ◽  
pp. 883-888 ◽  
Author(s):  
Caili Su ◽  
Lingfeng Zhu ◽  
Chuan Zhang ◽  
Xianghui Qi ◽  
Yiping Guo ◽  
...  

2005 ◽  
Vol 52 (1-2) ◽  
pp. 115-121 ◽  
Author(s):  
M.L. Gong ◽  
N.Q. Ren ◽  
D.F. Xing

Start-up of a continuously stirred tank reactor for bio-hydrogen production under different initial organic loading rate (OLR) of 3, 7 and 10 kgCOD/m3 d, respectively, was carried out with sewage sludge as inoculum. Molasses wastewater was used as substrate and hydraulic retention time was kept at 6 h. This study aimed to assess OLR on the formation of fermentation types and the structure of microbial communities during the start-up period. It was found that at an initial OLR of 7 kgCOD/m3 d and an initial biomass of 6.24 gVSS/L, an equilibrial microbial community of ethanol-type fermentation could be established within 30 days. The observed average specific hydrogen production rate was 276 mLH2/gVSS d, which was 40% higher than that of the one acclimated with 3 kgCOD/m3 d. Based on denaturing gradient gel electrophoresis profiles, significant microbial population shifts took place at the first 15 days, but a longer period up to 30 days was required to establish a microbial community with stable metabolic activity.


2004 ◽  
Vol 50 (10) ◽  
pp. 229-234 ◽  
Author(s):  
S.T.-L. Tay ◽  
H.-L. Jiang ◽  
J.-H. Tay

Phenol-degrading aerobic granules were cultivated in a sequencing batch reactor with an influent phenol concentration of 500 mg l−1. Eight strains were isolated from aerobic granules to characterize the functional redundancy of the microbial community in the granules. The specific oxygen utilization kinetics show the eight strains possessed different phenol-degrading activities, with half-saturation constants (Ks) ranging from 0.4 to 70.5 mg phenol l−1. Two isolates belonging to dominant populations expressed differing functions. The first strain was linked to the function of phenol degradation as this strain has the highest phenol-degrading ability among all isolates, while the second strain was linked to the maintenance of the granule structure because of its strong self-flocculation activity. This study could be used to exploit the granule-based system for treating high-strength wastewaters.


2012 ◽  
Vol 441 ◽  
pp. 531-535 ◽  
Author(s):  
Jun Hu ◽  
Lan Zhou ◽  
Qing Wei Zhou ◽  
Fang Wei ◽  
Li Li Zhang ◽  
...  

Aerobic granules efficient at degrading paracetamol as the sole carbon and energy resource were successfully developed in a sequencing batch reactor (SBR). Aerobic granules were first observed about 220 days after reactor start-up. The images SEM showed the aerobic granules typically consisted of coccus and bacillus. Meanwhile, the size distribution of aerobic granules was analyzed on day 200. The result indicated that the granules eventually grew to become the dominant form of biomass in the reactor. The granular sludge on day 80 and 200 degraded paracetamol completely in 48 h and 28 h, respectively, indicating that granulation contributed to paracetamol degradation. The specific paracetamol degradation rate was observed to increase with increasing paracetamol initial concentration from 500 to 5000 mg/L, peaked at 1200 mg-MTBE/g-VSS·h, and declined with further increases in MTBE concentration as substrate inhibition effects became significant. This study demonstrates that paracetamol can be effectively degraded by aerobic granules and gives insight into the microorganisms potentially involved in the process.


Sign in / Sign up

Export Citation Format

Share Document