NOxRemoval from Simulated Flue Gas by Chemical Absorption−Biological Reduction Integrated Approach in a Biofilter

2008 ◽  
Vol 42 (10) ◽  
pp. 3814-3820 ◽  
Author(s):  
Shi-Han Zhang ◽  
Ling-Lin Cai ◽  
Xu-Hong Mi ◽  
Jin-Lin Jiang ◽  
Wei Li
2014 ◽  
Vol 28 (12) ◽  
pp. 7591-7598 ◽  
Author(s):  
Nan Liu ◽  
Yan Jiang ◽  
Lei Zhang ◽  
Yinfeng Xia ◽  
Bihong Lu ◽  
...  

2014 ◽  
Vol 98 (20) ◽  
pp. 8497-8512 ◽  
Author(s):  
Shihan Zhang ◽  
Han Chen ◽  
Yinfeng Xia ◽  
Nan Liu ◽  
Bi-Hong Lu ◽  
...  

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoyue Sun ◽  
Yu Zhang ◽  
Zhenping Qu ◽  
Jiti Zhou

AbstractTo overcome the problem that ferrous complexes are easily oxidized by O2 and then lose NO binding ability in the chemical absorption-biological reduction (CABR) process, cobalt(II)-histidine [Co(II)His] was proposed as an alternative. To evaluate the applicability of Co(II)His, the effects of CoHis absorbent on the aerobic denitrification by Paracoccus versutus LYM were investigated. Results indicated that His significantly promoted nitrite reduction. The inhibition effects of CoHis absorbent could be substantially alleviated by increasing the initial His/Co2+ to 4 or higher. CoHis with concentrations of 4, 8, 12, 16 and 20 mM presented no distinct effect on nitrite reduction, but slightly inhibited the reduction of nitrate, resulting in longer lag of nitrate reduction, and obviously promoted the growth of strain LYM. In the presence of 5, 10, 15 and 20 mM CoHis absorbent, the main denitrification product was N2 (not less than 95.0%). This study is of significance in verifying the applicability of Co(II)His in the CABR process, and provides a referable CoHis absorbent concentration as 20 mM with an initial His/Co2+ of 4 for the future experiments.


2016 ◽  
Vol 50 (16) ◽  
pp. 8705-8712 ◽  
Author(s):  
Jingkai Zhao ◽  
Yinfeng Xia ◽  
Meifang Li ◽  
Sujing Li ◽  
Wei Li ◽  
...  

2021 ◽  
Vol 07 ◽  
Author(s):  
Wei Li

: Exploring low-cost, green and safe technologies to provide an alternative to the conventional selective catalytic reduction process is key to the control of NOx emitted from small-scale boilers and other industrial processes. To meet the demand, the chemical absorption-biological reduction integrated system has been developing recently. chemical absorption-biological reduction integrated system applies Fe(II)EDTA for NO absorption and iron-reducing and denitrifying bacteria for absorbent regeneration. Many studies have focused on the enhancements of mass transfer and biological reaction, among which the biological processes were the rate-limiting steps. This review summarizes the current researches on the biological processes in the CABR system, which focuses on the mechanism and enhancement of biochemical reactions, and provides the possible directions of future research.


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 330 ◽  
Author(s):  
Yu Zhang ◽  
Lijian Sun ◽  
Jiti Zhou

In the simultaneous flue gas desulfurization and denitrification by biological combined with chelating absorption technology, SO2 and NO are converted into sulfate and Fe(II)EDTA-NO which need to be reduced in biological reactor. Increasing the removal loads of sulfate and Fe(II)EDTA-NO and converting sulfate to elemental sulfur will benefit the application of this process. A moving-bed biofilm reactor was adopted for sulfate and Fe(II)EDTA-NO biological reduction. The removal efficiencies of the sulfate and Fe(II)EDTA-NO were 96% and 92% with the influent loads of 2.88 kg SO42−·m−3·d−1 and 0.48 kg NO·m−3·d−1. The sulfide produced by sulfate reduction could be reduced by increasing the concentrations of Fe(II)EDTA-NO and Fe(III)EDTA. The main reduction products of sulfate and Fe(II)EDTA-NO were elemental sulfur and N2. It was found that the dominant strain of sulfate reducing bacteria in the system was Desulfomicrobium. Pseudomonas, Sulfurovum and Arcobacter were involved in the reduction of Fe(II)EDTA-NO.


Sign in / Sign up

Export Citation Format

Share Document