scholarly journals Effects of cobalt-histidine absorbent on aerobic denitrification by Paracoccus versutus LYM

AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoyue Sun ◽  
Yu Zhang ◽  
Zhenping Qu ◽  
Jiti Zhou

AbstractTo overcome the problem that ferrous complexes are easily oxidized by O2 and then lose NO binding ability in the chemical absorption-biological reduction (CABR) process, cobalt(II)-histidine [Co(II)His] was proposed as an alternative. To evaluate the applicability of Co(II)His, the effects of CoHis absorbent on the aerobic denitrification by Paracoccus versutus LYM were investigated. Results indicated that His significantly promoted nitrite reduction. The inhibition effects of CoHis absorbent could be substantially alleviated by increasing the initial His/Co2+ to 4 or higher. CoHis with concentrations of 4, 8, 12, 16 and 20 mM presented no distinct effect on nitrite reduction, but slightly inhibited the reduction of nitrate, resulting in longer lag of nitrate reduction, and obviously promoted the growth of strain LYM. In the presence of 5, 10, 15 and 20 mM CoHis absorbent, the main denitrification product was N2 (not less than 95.0%). This study is of significance in verifying the applicability of Co(II)His in the CABR process, and provides a referable CoHis absorbent concentration as 20 mM with an initial His/Co2+ of 4 for the future experiments.

2016 ◽  
Vol 50 (16) ◽  
pp. 8705-8712 ◽  
Author(s):  
Jingkai Zhao ◽  
Yinfeng Xia ◽  
Meifang Li ◽  
Sujing Li ◽  
Wei Li ◽  
...  

2021 ◽  
Vol 07 ◽  
Author(s):  
Wei Li

: Exploring low-cost, green and safe technologies to provide an alternative to the conventional selective catalytic reduction process is key to the control of NOx emitted from small-scale boilers and other industrial processes. To meet the demand, the chemical absorption-biological reduction integrated system has been developing recently. chemical absorption-biological reduction integrated system applies Fe(II)EDTA for NO absorption and iron-reducing and denitrifying bacteria for absorbent regeneration. Many studies have focused on the enhancements of mass transfer and biological reaction, among which the biological processes were the rate-limiting steps. This review summarizes the current researches on the biological processes in the CABR system, which focuses on the mechanism and enhancement of biochemical reactions, and provides the possible directions of future research.


2008 ◽  
Vol 42 (10) ◽  
pp. 3814-3820 ◽  
Author(s):  
Shi-Han Zhang ◽  
Ling-Lin Cai ◽  
Xu-Hong Mi ◽  
Jin-Lin Jiang ◽  
Wei Li

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 818
Author(s):  
Georges Ona-Nguema ◽  
Delphine Guerbois ◽  
Céline Pallud ◽  
Jessica Brest ◽  
Mustapha Abdelmoula ◽  
...  

Nitrification-denitrification is the most widely used nitrogen removal process in wastewater treatment. However, this process can lead to undesirable nitrite accumulation and subsequent ammonium production. Biogenic Fe(II-III) hydroxycarbonate green rust has recently emerged as a candidate to reduce nitrite without ammonium production under abiotic conditions. The present study investigated whether biogenic iron(II-III) hydroxycarbonate green rust could also reduce nitrite to gaseous nitrogen during bacterial nitrate reduction. Our results showed that biogenic iron(II-III) hydroxycarbonate green rust could efficiently decrease the selectivity of the reaction towards ammonium during heterotrophic nitrate reduction by native wastewater-denitrifying bacteria and by three different species of Shewanella: S. putrefaciens ATCC 12099, S. putrefaciens ATCC 8071 and S. oneidensis MR-1. Indeed, in the absence of biogenic hydroxycarbonate green rust, bacterial reduction of nitrate converted 11–42% of the initial nitrate into ammonium, but this value dropped to 1–28% in the presence of biogenic hydroxycarbonate green rust. Additionally, nitrite accumulation did not exceed the 2–13% in the presence of biogenic hydroxycarbonate green rust, versus 0–28% in its absence. Based on those results that enhance the extent of denitrification of about 60%, the study proposes a water treatment process that couples the bacterial nitrite production with the abiotic nitrite reduction by biogenic green rust.


2016 ◽  
Vol 82 (14) ◽  
pp. 4190-4199 ◽  
Author(s):  
Tekle Tafese Fida ◽  
Chuan Chen ◽  
Gloria Okpala ◽  
Gerrit Voordouw

ABSTRACTNitrate reduction to nitrite in oil fields appears to be more thermophilic than the subsequent reduction of nitrite. Concentrated microbial consortia from oil fields reduced both nitrate and nitrite at 40 and 45°C but only nitrate at and above 50°C. The abundance of thenirSgene correlated with mesophilic nitrite reduction activity.ThaueraandPseudomonaswere the dominant mesophilic nitrate-reducing bacteria (mNRB), whereasPetrobacterandGeobacilluswere the dominant thermophilic NRB (tNRB) in these consortia. The mNRBThauerasp. strain TK001, isolated in this study, reduced nitrate and nitrite at 40 and 45°C but not at 50°C, whereas the tNRBPetrobactersp. strain TK002 andGeobacillussp. strain TK003 reduced nitrate to nitrite but did not reduce nitrite further from 50 to 70°C. Testing of 12 deposited pure cultures of tNRB with 4 electron donors indicated reduction of nitrate in 40 of 48 and reduction of nitrite in only 9 of 48 incubations. Nitrate is injected into high-temperature oil fields to prevent sulfide formation (souring) by sulfate-reducing bacteria (SRB), which are strongly inhibited by nitrite. Injection of cold seawater to produce oil creates mesothermic zones. Our results suggest that preventing the temperature of these zones from dropping below 50°C will limit the reduction of nitrite, allowing more effective souring control.IMPORTANCENitrite can accumulate at temperatures of 50 to 70°C, because nitrate reduction extends to higher temperatures than the subsequent reduction of nitrite. This is important for understanding the fundamentals of thermophilicity and for the control of souring in oil fields catalyzed by SRB, which are strongly inhibited by nitrite.


2015 ◽  
Vol 16 (1) ◽  
pp. 208-218 ◽  
Author(s):  
Deniz Uçar ◽  
Emine Ubay Çokgör ◽  
Erkan Şahinkaya

The biological reduction of nitrate and perchlorate was comparatively evaluated in autotrophic and mixotrophic bioreactors using elemental sulfur and/or methanol as the energy source. The mixotrophic reactor was supplemented with methanol at CH3OH/NO3−-N ratio of 1 or 1.4. The mixotrophic reactor completely reduced perchlorate in the feed up to 1,000 μg l−1. The autotrophic reactor also showed high perchlorate reduction performance and decreased perchlorate from 1,000 μg l−1 to around 33 μg l−1. Complete reduction of 25 mg NO3−-N l−1 was achieved in both reactors, corresponding to a maximum nitrate reduction rate of 300 mg NO3−-N l−1d−1 and 400 mg NO3−-N l−1d−1 in the autotrophic and mixotrophic processes, respectively. Autotrophic denitrification caused an increase of effluent sulfate concentration, which may exceed the drinking water guideline value of 250 mg l−1. In the mixotrophic denitrification process, the effluent sulfate concentration was controlled by adjusting the C/N ratio in the influent. Mixotrophic denitrification was stimulated by 25 mg l−1 methanol addition and 53% of influent nitrate was reduced by the heterotrophic process, which decreased the effluent sulfate concentration to half of the autotrophic counterpart. Therefore, the mixotrophic process may be preferred over the autotrophic process when effluent sulfate concentration is of concern and a higher perchlorate reduction efficiency is desired.


1977 ◽  
Vol 23 (3) ◽  
pp. 306-310 ◽  
Author(s):  
Carlos A. Neyra ◽  
Peter Van Berkum

Nitrate and nitrite reduction under aerobic, microaerophillic, and anaerobic conditions was demonstrated in Spirillum lipoferum (ATCC 29145). Nitrite did not accumulate during assimilatory nitrate reduction in air. The nitrite produced during dissimilatory nitrate reduction accumulated in the medium but not in the cells. On exposure of the bacteria to nitrate and anaerobiosis, a low initial rate (lag) was followed by accelerated rates of nitrite accumulation. A 3-h anaerobic pretreatment, in the absence of nitrate, did not avoid the lag phase. No nitrate reductase activity (NRA) developed in the presence of chloramphenicol. The data suggest that induction of anaerobic NRA in S. lipoferum required nitrate and protein synthesis.Anaerobic N2ase activity by S. lipoferum was greatly stimulated in the presence of nitrate. The time course of nitrate reduction was coincidental with the pattern of nitrate-stimulated N2ase activity indicating that a relationship exists between these two processes.


Sign in / Sign up

Export Citation Format

Share Document