aerobic denitrification
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 122)

H-INDEX

41
(FIVE YEARS 11)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3512
Author(s):  
Haochi Zhang ◽  
Dengfeng Hou ◽  
Shuai Zhang ◽  
Xian Cao ◽  
Hui Wang ◽  
...  

Nitrate (NO3−) in wastewater is a rising global threat to ecological and health safety. A sufficient carbon source, as the electron donor, is essential in the conventional biological denitrification process. It is not appropriate to add extra carbon sources into specific water bodies in terms of material cost and secondary pollution. Thus, innovative NO3− removal technologies that are independent of carbon sources, are urgently needed. This study constructed sediment microbial fuel cells (SMFCs) for aerobic denitrification in low-organic matter wastewater and explored the key factors affecting denitrification efficiencies. The SMFC treatments removed 72–91% NO3− through two main denitrifying stages which were driven by carbon sources (COD) and generated electrons, respectively. After COD was fully consumed, denitrification efficiencies were enhanced in SMFC treatments by 24–47% using the generated electrons within 3 days. In this stage, the NO3− removal efficiencies were positively correlated with external current intensities (p < 0.05). The improved denitrification efficiencies were attributed to two enriched phyla in the SMFC cathode. The dominant genera also demonstrated the heterotrophic denitrifying capacity of the SMFC biocathode. Furthermore, electrical characteristics could be used to monitor or regulate the denitrification process in the SMFC system. In conclusion, this study presents an innovative treatment strategy that is economical and eco-friendly compared with conventional physicochemical methods.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3251
Author(s):  
Yinan Zhang ◽  
Yuxin Fang ◽  
Banglong Wang ◽  
Hangjun Zhang ◽  
Jiafeng Ding

Based on the improved high-efficiency sewage treatment performance of submerged membrane bioreactors (SMBRs), we focused on how to adjust the C/N ratio of the influent water during reactor start-up to prevent an excessive C/N ratio from causing membrane fouling. In this study, an experimental method of gradually adjusting the influent C/N ratio to quickly start the reactor was proposed, and the results showed that biofilm formation in R1 (SMBR, three influent C/N ratios of 5, 10, and 20) was approximately completed in 32 days, shorter than that (40 days) required in R2 (SMBR, influent C/N ratio of 20). Higher removal efficiencies of 76.4% for TN, 70.1% for COD, and 79.2% for NH3-N were obtained in R1 than in R2. The high-throughput sequencing results indicated that after 150 days of operation, the Shannon index of bacteria in R1 increased from 2.97 to 4.41 and the growth of Nakamurella, Ferruginibacter, and Rhodanobacter was promoted in the reactor, which indicated substantial microbial diversity in the biofilm. Therefore, gradually adjusting the influent C/N ratio could effectively enhance the nitrogen removal performance of denitrification microbial communities in SMBRs. This study offers a reliable approach for starting the SMBR-enhanced biological nutrient removal process in wastewater treatment plants by gradually adjusting the influent C/N ratio.


Sign in / Sign up

Export Citation Format

Share Document