The Lasagna Technology for In Situ Soil Remediation. 2. Large Field Test

1999 ◽  
Vol 33 (7) ◽  
pp. 1092-1099 ◽  
Author(s):  
Sa V. Ho ◽  
Christopher Athmer ◽  
P. Wayne Sheridan ◽  
B. Mason Hughes ◽  
Robert Orth ◽  
...  
2021 ◽  
Author(s):  
Xiaoyue Guan ◽  
Gary Li ◽  
Hanming Wang ◽  
Shubo Shang ◽  
Timothy Tokar ◽  
...  

Abstract Radio frequency (RF) heating is recognized as a technique having the potential to thermally enhance remediation of hydrocarbon-impacted soil. RF heating delivers electromagnetic (EM) power to a targeted body of soil, resulting in an increased soil temperature that enhances the in-situ remediation processes such as biodegradation. Antennas are placed either on the ground or installed in the soil near the ground surface. The antennas operate in the hundreds of kHz to MHz range. To model the RF heating process, we successfully coupled a reservoir simulator with a 3-dimensional (3D) EM solver to evaluate the ability of RF technology to heat soil in situ. The coupled reservoir/EM simulator solves the EM fields and associated heating for a heterogeneous reservoir or soil volume in the presence of multiple antennas. The coupling was accomplished through a flexible interface in the reservoir simulator that allows the runtime loading of third-party software libraries with additional physics. This coupled workflow had been previously used for studying RF heating for heavy oil recovery (Li 2019). An RF heating simulation case study was performed in support of a soil remediation field test designed to demonstrate the ability to heat soils using EM energy. The study included field test data analysis, simulation model building, and history matching the model to test data. Results indicate, on average, the soil was heated ∼2-3°C above the initial formation temperature after approximately two days (52 hours) of RF heating. We found that the RF heating was local, and our simulation model, after tuning input parameters, was able to predict a temperature profile consistent with the field test observations. With properly designed RF heating field pilots and tuning of EM and reservoir parameters in simulation models, the coupled reservoir/EM simulator is a powerful tool for the calibration, evaluation, and optimization of RF heating operations.


2014 ◽  
Vol 9 (4) ◽  
pp. 306-316 ◽  
Author(s):  
Rui Micaelo ◽  
Maria C. Azevedo ◽  
Jaime Ribeiro

The objective of this study is to determine the influence of field compaction conditions on hot-mix asphalt layers compaction. A large field test was carried out to assess the compaction degree variation under field conditions such as the type of layer, the temperature and the roller (weight and compaction mode). Compaction evolution with roller passes of two asphalt layers was assessed in-situ with a nuclear and a non-nuclear measurement device. The analysis of the compaction results with regression models showed that the temperature, the roller weight and the asphalt mixture are the most influential and that the frequency, for all dynamic compaction modes, is not relevant. Finishing compaction increases layer’s compaction degree up to 2%. The two different density gauges used in this study measured different compaction degree values.


1999 ◽  
Vol 33 (7) ◽  
pp. 1086-1091 ◽  
Author(s):  
Sa V. Ho ◽  
Christopher Athmer ◽  
P. Wayne Sheridan ◽  
B. Mason Hughes ◽  
Robert Orth ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Robert J. Francis ◽  
Gillian Robb ◽  
Lee McCann ◽  
Bhagwati Khatri ◽  
James Keeble ◽  
...  

AbstractTuberculosis (TB) preclinical testing relies on in vivo models including the mouse aerosol challenge model. The only method of determining colony morphometrics of TB infection in a tissue in situ is two-dimensional (2D) histopathology. 2D measurements consider heterogeneity within a single observable section but not above and below, which could contain critical information. Here we describe a novel approach, using optical clearing and a novel staining procedure with confocal microscopy and mesoscopy, for three-dimensional (3D) measurement of TB infection within lesions at sub-cellular resolution over a large field of view. We show TB morphometrics can be determined within lesion pathology, and differences in infection with different strains of Mycobacterium tuberculosis. Mesoscopy combined with the novel CUBIC Acid-Fast (CAF) staining procedure enables a quantitative approach to measure TB infection and allows 3D analysis of infection, providing a framework which could be used in the analysis of TB infection in situ.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


1997 ◽  
Vol 44 (4) ◽  
pp. 206-212 ◽  
Author(s):  
Tadachika SENO ◽  
Yushi HIRATA
Keyword(s):  

2012 ◽  
Vol 446-449 ◽  
pp. 1914-1917
Author(s):  
Zhi Tao Ma ◽  
Han Long Liu ◽  
Yong Ping Wang ◽  
Ji Ming Zhu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document