Field Test Research on Soil Compacting Effect of Cast-In Situ Concrete Pipe Pile

2012 ◽  
Vol 446-449 ◽  
pp. 1914-1917
Author(s):  
Zhi Tao Ma ◽  
Han Long Liu ◽  
Yong Ping Wang ◽  
Ji Ming Zhu
Keyword(s):  
2012 ◽  
Vol 204-208 ◽  
pp. 743-746
Author(s):  
Zhi Tao Ma ◽  
Yong Ping Wang

The cast-in-situ concrete pipe pile is a new kind of pile used widely in China to improve the soft ground. In this paper, the general introduction of this pile was given, mainly including the pile driving machine, the technique of pile working and the structure of pile. At last, one in situ test of this pile under lateral load were given, the characteristics of displacement of pile body and displacement of pile top were analyzed. These results can give a reference for practice project.


2012 ◽  
Vol 446-449 ◽  
pp. 1914-1917
Author(s):  
Zhi Tao Ma ◽  
Han Long Liu ◽  
Yong Ping Wang ◽  
Ji Ming Zhu

Combined with practical engineering application, the test researches were carried out to analyze the soil compacting effects of Cast-in-situ concrete pipe pile while the pile was driven by vibration hammer. This article is focused on the characteristics of soil uplift and lateral deformation around pile, included surface soil and deep soil. In addition, the change characteristic of pore water pressure of soil around pile is also analyzed, and some useful rules were concluded. All researches are helpful to optimize the construction parameters, such as distance between piles, pile diameter etc., to improve the quality of pile foundation, also to reduce the construction impact on environment.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2711-2730
Author(s):  
A.. Perez–Perez ◽  
M.. Mujica Chacín ◽  
I.. Bogdanov ◽  
A.. Brisset ◽  
O.. Garnier

Summary In–situ upgrading (IU) is a promising method of improved viscous– and heavy–oil recovery. The IU process implies a reservoir heating up and exposure to a temperature higher than 300°C for a time period long enough to promote a series of chemical reactions. The pyrolysis reactions produce lighter oleic and gaseous components, while a solid residue remains underground. In this work, we developed a numerical model of IU using laboratory experience (kinetics measurements and core experiments) and validated the results by applying our model to an IU field–scale test published in the literature. Finally, we studied different operational conditions in a search for energy–efficient configurations. In this work, two types of IU experimental data are used from two vertical–tube experiments with Canadian bitumen cores (0.15 and 0.69 m). A general IU numerical model for the different experimental setups has been developed and compared with experimental data, using a commercial reservoir–simulator framework. This model is capable of representing the phase distribution of pseudocomponents, the thermal decomposition reactions of bitumen fractions, and the generation of gases and residue (solid) under thermal cracking conditions. Simulation results for the cores exposed to a temperature of 380°C and production pressure of 15 bar have shown that oil production (per pseudocomponent) and oil–sample quality were well–predicted by the model. Some differences in gas production and total solid residue were observed with respect to laboratory measurements. Computer–assisted history matching was performed using an uncertainty–analysis tool with the most–important model parameters. To better understand IU field–scale test results, the Shell Viking pilot (Peace River) was modeled and analyzed with the proposed IU model. The appropriate gridblock size was determined and the calculation time was reduced using the adaptive mesh–refinement (AMR) technique. The quality of products, the recovery efficiency, and the energy expenses obtained with our model were in good agreement with the field test results. In addition, the conversion results (upgraded oil, gas, and solid residue) from the experiments were compared with those obtained in the field test. Additional analysis was performed to identify energy–efficient configurations and to understand the role of some key variables (e.g., heating period and rate and the production pressure) in the global IU upgrading performance. We discuss these results, which illustrate and quantify the interplay between energy efficiency and productivity indicators.


1994 ◽  
Vol 19 (1) ◽  
pp. 267-268
Author(s):  
Z. D. DeLamar ◽  
T. P. Mack

Abstract This field test was conducted in conventionally planted and tilled soybeans at the E. V. Smith Plant Breeding Unit of Auburn University at Tallassee, AL. Eleven treatments including an untreated control were replicated 4 times in a RCBD. Each plot was 6 rows wide (30 inch row spacing) and 40 ft long. Replicates were separated by a 15 ft alley. Treatments were applied in water on 13 Aug using a boom sprayer with one 80003 flat fan nozzle per row operating at 32 psi and delivering 8.0 gal/acre. Insect populations were monitored with 2 beat sheet samples per plot. One beat sheet sample was done when 36 inches of the 2 adjacent rows were sampled by beating the plants vigorously over the beat sheet. Insects were identified and recorded in situ. Samples were taken 18 h before treatment and at 3, 7 and 10 DAT.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijun Yang ◽  
Qing Fang ◽  
Bu Lv ◽  
Can Mei ◽  
Xudong Fu

The cracks are likely to initiate on a lateral loaded pile and would cause greater deflection at the pile head. However, there is a lack of thorough investigation into the effect of cracking on the response of the lateral loaded pile. In this article, a full-scale field test was carried out to investigate the behavior of Drilled and Postgrouted Concrete Pipe Pile under lateral loads. A novel analysis method for the lateral loaded pile, which can take the cracking effects into consideration, was proposed, and the validity was verified by the test results. With the proposed method, the cracking effects on flexural rigidity, displacement, rotation, and bending moment of the pile were studied. In brief, cracking effect would dramatically reduce the flexural rigidity of the pile, remarkable increase the displacement and rotation of the pile top, and slightly decrease bending moment of the pile. Unambiguously, the results show that the proposed method can excellently predict the response of laterally loaded piles under cracking effects.


2019 ◽  
Vol 53 (13) ◽  
pp. 7483-7493 ◽  
Author(s):  
Paul W. Reimus ◽  
Martin A. Dangelmayr ◽  
James T. Clay ◽  
Kevin R. Chamberlain

Sign in / Sign up

Export Citation Format

Share Document