Studies on Organolanthanide Complexes. 53. Effect of Rare Earth Metal Radius on the Molecular Structure: Synthesis and X-ray Crystal Structure of Bis((2-methoxyethyl)cyclopentadienyl) Rare Earth metal Chlorides

1994 ◽  
Vol 33 (15) ◽  
pp. 3382-3388 ◽  
Author(s):  
Changtao Qian ◽  
Bing Wang ◽  
Daoli Deng ◽  
Jiquan Hu ◽  
Jian Chen ◽  
...  
1994 ◽  
Vol 49 (11) ◽  
pp. 1525-1530 ◽  
Author(s):  
Rainer Pöttgen

The new ternary stannides RE2Au2Sn (RE = Gd, Tb) and indides RE2Au2In (RE = Y, Gd-Tm, Lu) were synthesized by arc-melting of the elemental components and subsequent annealing at 800 °C. While Gd2Au2Sn, Tb2Au2Sn and the indides with RE = Y, Gd-Er crystallize in the ordered U3Si2 structure, Tm2Au2In and Lu2Au2In adopt the ordered Zr3Al2 structure, respectively. The crystal structure of Dy2Au2In was refined from single-crystal X- ray data: P4/mbm, Z = 2, a = 784.1(1) pm, c = 373.9(1) pm, V = 0.2299 nm3 and R = 0.028 for 342 F2 values and 12 variables. The tin (indium) atoms in these compounds occupy [RE8] square prisms and the gold atoms are surrounded by [RE6] trigonal prisms. These fragments are derived from the AlB2 and CsCl-type structures. The crystal chemistry of these com­pounds is briefly discussed.


2011 ◽  
Vol 29 (2) ◽  
pp. 273-277 ◽  
Author(s):  
Yibin Wang ◽  
Xiaoying Feng ◽  
Yunjie Luo ◽  
Yong Zhang ◽  
Hongze Liang

1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2005 ◽  
Vol 60 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Rainer Kraft ◽  
Rainer Pöttgen

The rare earth metal (RE)-magnesium-thallides REMgTl (RE = Y, La-Nd, Sm, Gd-Tm, Lu) were prepared from the elements in sealed tantalum tubes in a water-cooled sample chamber of a high-frequency furnace. The thallides were characterized through their X-ray powder patterns. They crystallize with the hexagonal ZrNiAl type structure, space group P62m, with three formula units per cell. Four structures were refined from X-ray single crystal diffractometer data: α = 750.5(1), c = 459.85(8) pm, wR2 = 0.0491, 364 F2 values, 14 variables for YMgTl; α = 781.3(1), c = 477.84(8) pm, wR2 = 0.0640, BASF = 0.09(2), 425 F2 values, 15 variables for LaMgTl; α = 774.1(1), c = 473.75(7) pm, wR2 = 0.0405, 295 F2 values, 14 variables for CeMgTl; a = 760.3(1), c = 465.93(8) pm, wR2 = 0.0262, 287 F2 values, 14 variables for SmMgTl. The PrMgTl, NdMgTl, GdMgTl, TbMgTl, and DyMgTl structures have been analyzed using the Rietveld technique. The REMgTl structures contain two cystallographically independent thallium sites, both with tri-capped trigonal prismatic coordination: Tl1Mg3RE6 and Tl2Mg6RE3. Together the magnesium and thallium atoms form three-dimensional [MgTl] networks with Mg-Mg distances of 327 and Mg-Tl distances in the range 299 - 303 pm (data for CeMgTl)


Sign in / Sign up

Export Citation Format

Share Document