Evaluation of the Chain Length Distribution in Free-Radical Emulsion Polymerization—The Compartmentalization Problem

2013 ◽  
Vol 53 (18) ◽  
pp. 7275-7295 ◽  
Author(s):  
Michael Wulkow ◽  
John R. Richards
Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 656 ◽  
Author(s):  
Hossein Riazi ◽  
Ahmad Arabi Shamsabadi ◽  
Michael Grady ◽  
Andrew Rappe ◽  
Masoud Soroush

Many widely-used polymers are made via free-radical polymerization. Mathematical models of polymerization reactors have many applications such as reactor design, operation, and intensification. The method of moments has been utilized extensively for many decades to derive rate equations needed to predict polymer bulk properties. In this article, for a comprehensive list consisting of more than 40 different reactions that are most likely to occur in high-temperature free-radical homopolymerization, moment rate equations are derived methodically. Three types of radicals—secondary radicals, tertiary radicals formed through backbiting reactions, and tertiary radicals produced by intermolecular chain transfer to polymer reactions—are accounted for. The former tertiary radicals generate short-chain branches, while the latter ones produce long-chain branches. In addition, two types of dead polymer chains, saturated and unsaturated, are considered. Using a step-by-step approach based on the method of moments, this article guides the reader to determine the contributions of each reaction to the production or consumption of each species as well as to the zeroth, first and second moments of chain-length distributions of live and dead polymer chains, in order to derive the overall rate equation for each species, and to derive the rate equations for the leading moments of different chain-length distributions. The closure problems that arise are addressed by assuming chain-length distribution models. As a case study, β-scission and backbiting rate coefficients of methyl acrylate are estimated using the model, and the model is then applied to batch spontaneous thermal polymerization to predict polymer average molecular weights and monomer conversion. These predictions are compared with experimental measurements.


Author(s):  
Burak Erman ◽  
James E. Mark

As was mentioned in chapter 10, end-linking reactions can be used to make networks of known structures, including those having unusual chain-length distributions. One of the uses of networks having a bimodal distribution is to clarify the dependence of ultimate properties on non-Gaussian effects arising from limited-chain extensibility, as was already pointed out. The following chapter provides more detail on this application, and others. In fact, the effect of network chain-length distribution, is one aspect of rubberlike elasticity that has not been studied very much until recently, because of two primary reasons. On the experimental side, the cross-linking techniques traditionally used to prepare the network structures required for rubberlike elasticity have been random, uncontrolled processes, as was mentioned in chapter 10. Examples are vulcanization (addition of sulfur), peroxide thermolysis (free-radical couplings), and high-energy radiation (free-radical and ionic reactions). All of these techniques are random in the sense that the number of cross-links thus introduced is not known directly, and two units close together in space are joined irrespective of their locations along the chain trajectories. The resulting network chain-length distribution is unimodal and probably very broad. On the theoretical side, it has turned out to be convenient, and even necessary, to assume a distribution of chain lengths that is not only unimodal, but monodisperse! There are a number of reasons for developing techniques to determine or, even better, control network chain-length distributions. One is to check the “weakest link” theory for elastomer rupture, which states that a typical elastomeric network consists of chains with a broad distribution of lengths, and that the shortest of these chains are the “culprits” in causing rupture. This is attributed to the very limited extensibility associated with their shortness that is thought to cause them to break at relatively small deformations and then act as rupture nuclei. Another reason is to determine whether control of chain-length distribution can be used to maximize the ultimate properties of an elastomer. As was described in chapter 10, a variety of model networks can be prepared using the new synthetic techniques that closely control the placements of crosslinks in a network structure.


2020 ◽  
Vol 11 (26) ◽  
pp. 4281-4289
Author(s):  
Matt K. Donald ◽  
Stefan A. F. Bon

A method to determine chain transfer constants in free radical polymerizations that are >1 using molecular weight distribution data.


2017 ◽  
Vol 26 (5) ◽  
pp. 1700041 ◽  
Author(s):  
Mohammad Reza Saeb ◽  
Yousef Mohammadi ◽  
Hadi Rastin ◽  
Tayebeh Sadat Kermaniyan ◽  
Alexander Penlidis

2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document