Vibrational-rotational-translational energy transfer in argon + hydroxyl. Quasi-classical-trajectory state-to-state cross sections

1982 ◽  
Vol 86 (13) ◽  
pp. 2538-2549 ◽  
Author(s):  
Donald L. Thompson





Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as



1994 ◽  
Vol 72 (3) ◽  
pp. 660-672 ◽  
Author(s):  
R. Glen Macdonald ◽  
Kopin Liu Argonne ◽  
David M. Sonnenfroh ◽  
Di-Jia Liu

The title reaction has been studied in a crossed molecular beam apparatus. Both the product state distributions and the translational energy dependence of the reaction cross sections were measured under single collision conditions. Excellent agreement was found over a wide temperature range (26–3800 K) between rate constants deduced from the translational excitation function and recent thermal kinetic data. The rotational state distribution was found to be very cold compared to the reaction exothermicity, and could be described by a Boltzmann temperature of 110 K for all K-doublet levels. The vibronic state distribution was also found to be cold, with 70% of the products formed in the vibrational ground state. By comparing the molecular beam results for vibronic state distributions with those obtained from recent bulb experiments, it was conjectured that there appears to be a strong correlation between rotation in the reactants and bending excitation in the products.





Sign in / Sign up

Export Citation Format

Share Document