Oxidation of aqueous bromide(1-) by hydroxyl radicals, studies by pulse radiolysis

1977 ◽  
Vol 81 (15) ◽  
pp. 1447-1448 ◽  
Author(s):  
Avner Mamou ◽  
Joseph Rabani ◽  
David Behar
1992 ◽  
Vol 192 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Sara Goldstein ◽  
Gidon Czapski ◽  
Haim Cohen ◽  
Dan Meyerstein

2019 ◽  
Vol 17 (45) ◽  
pp. 9734-9742 ◽  
Author(s):  
Nico Santschi ◽  
Benson J. Jelier ◽  
Samuel Stähelin ◽  
Thomas Nauser

The improved synthesis of perfluorinated dimethyl sulfoxide, DMSO-F6, and its activation with hydroxyl radicals to afford trifluoromethyl radicals is presented.


1991 ◽  
Vol 95 (13) ◽  
pp. 5166-5170 ◽  
Author(s):  
D. Lawless ◽  
N. Serpone ◽  
D. Meisel

1978 ◽  
Vol 33 (6) ◽  
pp. 666-668 ◽  
Author(s):  
Barry J. Parsons ◽  
Dietrich Schulte-Frohlinde ◽  
Clemens von Sonntag

Abstract In the photolysis of 5-bromouracil containing DNA Br atoms are expected inter mediates. In order to evaluate the possible site of attack of the Br atom at the sugar moiety of DNA the reaction of 2-deoxy-D-ribose with the Br atom (complexed with two bromide ions) was investigated. Hydroxyl radicals generated by the radiolysis of N2O saturated aqueous solutions were converted into Br3·2- radicals by 1 M bromide ions. Br3·2- reacts with 2-deoxy-D-ribose (k = 3.7 · 104M-1s-1, pulse radiolysis). The major product is 2-deoxy-D-erythro-pentonic acid (G = 2.4, γ-radiolysis). It is formed by hydrogen abstraction from C-l and oxidation of this radical by other radicals. An alternative route via the radical at C-2 is neglible. It follows that Br3·2- reacts preferentially at C-1 of 2-deoxy-D-ribose


1988 ◽  
Vol 43 (9) ◽  
pp. 1201-1205 ◽  
Author(s):  
Xian-Ming Pan ◽  
Eugenie Bastian ◽  
Clemens von Sonntag

Abstract The reactions of radiolytically generated hydroxyl radicals and H atoms with 1,4- and 1,3-cyclohexadiene were studied by pulse radiolysis and product analysis. Hydrogen abstraction from these substrates by the OH radical yields the cyclohexadienyl radical (ε (310 nm) = 4400 dm3 mol-1 cm-1 from the reaction of the H atom with benzene) with an efficiency of 50% (0.29 ,μmol J-1) in the case of 1,4-cyclohexadiene and 25% (0.15 ,μmol J-1) in the case of 1,3-cyclohexadiene as determined by pulse radiolysis. The remaining OH radicals add to the olefin. In 1.4-cyclohexa- diene the yield of the resulting adduct radicals has been determined in a steady-state 60Co-γ-irradiation experiment by reducing it with added 1.4-dithiothreitol (DTT) to 4-hydroxycyc- lohexene. There are two sites of OH radical attack in the case of 1.3-cyclohexadiene, and only the alkyl radical is reduced quantitatively by DTT (G(3-hydroxycyclohexene) = 0.15 ,μmol J-1). From material balance considerations it is concluded that the allylic radical must be formed with a G value of 0.28 ,μmol J-1 but largelv escapes reduction by DTT (G(4-hvdroxycyclohexene) = 0.03 ,μmol J-1). H atoms add preferentially to the double bonds of 1,4- and 1,3-cyclohexadiene (78% and 93%, respectively), while the O.- radical (the basic form of the OH radical) undergoes mainly H- abstraction (92% and 83%, respectively). The radicals formed in these systems decay bimolecularly (2k = 2.8 x 109 dm3 mol-1 s-1). In their combination reactions the cyclohexadienyl radicals form the four possible dimers in propor­tions such that the dienyl radical moiety shows a 2:1 preference to react from its central (1a) rather than from a terminal carbon atom (1b). Cyclohexadienyl radicals and the OH- and H-adduct radicals also cross-tcrminate by disproportionation and dimerization. Material balance has been obtained for the 1,4-cyclohexadiene system in N2O-Saturated solution (10-2 mol dm-3) at a dose rate of 0.14 Gy s-1, the products (G values in ,μmol J-1) being: benzene (0.085), 4-hydroxycyclohexene (0.25), cyclohexadienyl-dimers (0.144). cvclohexadienyl-OH-adduct- dimers (0.02), OH-adduct-dimers (0.02). Some of the 4-hydroxycyclohcxene is formed in an H-abstraction reaction by the OH-adduct radical from 1,4-cyclohexadiene.


Sign in / Sign up

Export Citation Format

Share Document