Annual Review of Materials Research, Volume 36, 2006 Edited by Venkatraman Gopalan (Pennsylvania State University), Gerhard Wegner (Max-Planck Institute, Mainz), David R. Clarke (University of California, Santa Barbara), Manfred Rühle (Max-Planck Institute, Stuttgart), and John C. Bravman (Stanford University). Annual Reviews:  Palo Alto, CA. 2006. xii + 636 pp. $85.00. ISBN 0-8243-1736-X.

2006 ◽  
Vol 128 (50) ◽  
pp. 16412-16412
Author(s):  
Douglass F. Taber

John F. Hartwig of the University of California, Berkeley showed (Nature 2012, 483, 70) that intramolecular C–H silylation of 1 selectively gave, after oxidation and acetylation, the bis acetate 2. Gong Chen of Pennsylvania State University coupled (J. Am. Chem. Soc. 2012, 134, 7313) 3 with 4 to give the ether 5. M. Christina White of the University of Illinois effected (J. Am. Chem. Soc. 2012, 134, 9721) selective oxidation of the taxane derivative 6 to the lactone 7. Most of the work on C–H functionalization has focused on the formation of C–C, C–O, and C–N bonds. Donald A. Watson of the University of Delaware developed (Angew. Chem. Int. Ed. 2012, 51, 3663) conditions for the complementary conversion of an alkene 8 to the allyl silane 9, a powerful and versatile nucleophile. Kilian Muniz of ICIQ Tarragona oxidized (J. Am. Chem. Soc. 2012, 134, 7242) the enyne 10 selectively to the amine 11. Phil S. Baran of Scripps/La Jolla devised (J. Am. Chem. Soc. 2012, 134, 2547) a protocol for the OH-directed amination of 12 to 13. Professor White developed (J. Am. Chem. Soc. 2012, 134, 2036) a related OH-directed amination of 14 to 15 that proceeded with retention of absolute configuration. Tom G. Driver of the University of Illinois, Chicago showed (J. Am. Chem. Soc. 2012, 134, 7262) that the aryl azide 16 could be cyclized directly to the amine, which was protected to give 17. As illustrated by the conversion of 18 to 20 devised (Adv. Synth. Catal. 2012, 354, 701) by Martin Klussmann of the Max-Planck-Institut, Mülheim, C–H functionalization can be accomplished by hydride abstraction followed by coupling of the resulting carbocation with a nucleophile. Olafs Daugulis of the University of Houston used (Angew. Chem. Int. Ed. 2012, 51, 5188) a Pd catalyst to couple 21 with 22 to give 23 with high diastereocontrol. Yoshiji Takemoto of Kyoto University cyclized (Angew. Chem. Int. Ed. 2012, 51, 2763) the chloroformate 24 directly to the oxindole 25.


Sign in / Sign up

Export Citation Format

Share Document