Machine-Learning-Guided Discovery and Optimization of Additives in Preparing Cu Catalysts for CO2 Reduction

2021 ◽  
Vol 143 (15) ◽  
pp. 5755-5762
Author(s):  
Ying Guo ◽  
Xinru He ◽  
Yuming Su ◽  
Yiheng Dai ◽  
Mingcan Xie ◽  
...  
Author(s):  
Marcus Reis ◽  
Filipp Gusev ◽  
Nicholas G. Taylor ◽  
Sang Hun Chung ◽  
Matthew D. Verber ◽  
...  

2021 ◽  
pp. 130899
Author(s):  
Russlan Jaafreh ◽  
Yoo Seong Kang ◽  
Jung-Gu Kim ◽  
Kotiba Hamad

ACS Catalysis ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 4854-4862 ◽  
Author(s):  
Gian Luca De Gregorio ◽  
Thomas Burdyny ◽  
Anna Loiudice ◽  
Pranit Iyengar ◽  
Wilson A. Smith ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Pedro Baptista de Castro ◽  
Kensei Terashima ◽  
Takafumi D Yamamoto ◽  
Zhufeng Hou ◽  
Suguru Iwasaki ◽  
...  

ACS Catalysis ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 6600-6608 ◽  
Author(s):  
Zachary W. Ulissi ◽  
Michael T. Tang ◽  
Jianping Xiao ◽  
Xinyan Liu ◽  
Daniel A. Torelli ◽  
...  

2021 ◽  
Author(s):  
Marcus Reis ◽  
Filipp Gusev ◽  
Nicolas Taylor ◽  
Sang Hun Chung ◽  
Matthew Verber ◽  
...  

2019 ◽  
Author(s):  
Anna Wuttig ◽  
Jaeyune Ryu ◽  
Yogesh Surendranath

Adsorbed CO is a critical intermediate in the electrocatalytic reduction of CO<sub>2</sub> to fuels. Contemporary methods for probing the thermodynamics of CO adsorption ignore the role of the electrolyte. Using in situ infrared spectroelectrochemistry, we disclose the contrasting influence of electrolyte competition on reversible CO binding to Au and Cu catalysts. Whereas reversible CO binding to Au surfaces is driven by substitution and reorientation of adsorbed water, CO binding to Cu requires the reductive displacement of adsorbed carbonate anions. Through variable temperature studies, we find that CO binding to Cu is enthalpically favored by ~36 kJ mol<sup>–1</sup> relative to CO adsorption on Au. The divergent CO adsorption stoichiometry on Au and Cu explains their disparate reactivity: water adsorption drives CO liberation from Au surfaces, impeding further reduction, whereas carbonate desorption drives CO accumulation on Cu, allowing for further reduction to hydrocarbons. These studies provide direct insight into how electrolyte constituents can serve as powerful design parameters for fine-tuning of CO surface populations and, thereby, CO2-to-fuels reactivity. <br>


2020 ◽  
Vol MA2020-01 (36) ◽  
pp. 1497-1497
Author(s):  
Brian Seger ◽  
Ming Ma ◽  
Ezra L Clark ◽  
Kasper Therkildsen ◽  
Ib Chorkendorff

2020 ◽  
Vol 8 (44) ◽  
pp. 23162-23186
Author(s):  
Yansong Zhou ◽  
Boon Siang Yeo

Recent advances in non-Cu catalysts for electrochemical reduction of CO2 to multi-carbon products are summarized, focusing on C–C bond formation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document