Membrane Mimetic Chemistry in Artificial Cells

Author(s):  
Jacob A. Vance ◽  
Neal K. Devaraj
2019 ◽  
Vol 3 (5) ◽  
pp. 573-578 ◽  
Author(s):  
Kwanwoo Shin

Living cells naturally maintain a variety of metabolic reactions via energy conversion mechanisms that are coupled to proton transfer across cell membranes, thereby producing energy-rich compounds. Until now, researchers have been unable to maintain continuous biochemical reactions in artificially engineered cells, mainly due to the lack of mechanisms that generate energy-rich resources, such as adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). If these metabolic activities in artificial cells are to be sustained, reliable energy transduction strategies must be realized. In this perspective, this article discusses the development of an artificially engineered cell containing a sustainable energy conversion process.


2021 ◽  
pp. 2000123
Author(s):  
Pantelitsa Dimitriou ◽  
Jin Li ◽  
Giusy Tornillo ◽  
Thomas McCloy ◽  
David Barrow

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nathanael A. Caveney ◽  
Sean D. Workman ◽  
Rui Yan ◽  
Claire E. Atkinson ◽  
Zhiheng Yu ◽  
...  

AbstractThe pathway for the biosynthesis of the bacterial cell wall is one of the most prolific antibiotic targets, exemplified by the widespread use of β-lactam antibiotics. Despite this, our structural understanding of class A penicillin binding proteins, which perform the last two steps in this pathway, is incomplete due to the inherent difficulty in their crystallization and the complexity of their substrates. Here, we determine the near atomic resolution structure of the 83 kDa class A PBP from Escherichia coli, PBP1b, using cryogenic electron microscopy and a styrene maleic acid anhydride membrane mimetic. PBP1b, in its apo form, is seen to exhibit a distinct conformation in comparison to Moenomycin-bound crystal structures. The work herein paves the way for the use of cryoEM in structure-guided antibiotic development for this notoriously difficult to crystalize class of proteins and their complex substrates.


Sign in / Sign up

Export Citation Format

Share Document