cell internalization
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 103)

H-INDEX

31
(FIVE YEARS 5)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Olga Bochkova ◽  
Alexey Dovjenko ◽  
Rustem Zairov ◽  
Kirill Kholin ◽  
Rinata Biktimirova ◽  
...  

The present work introduces coordinative binding of CuII ions with both amino-functionalized silica nanoparticles (SNs) and green-emitting carbon dots (CDs) as the pregrequisite for the CuII-assisted self-assembly of the CDs at the surface of the SNs. The produced composite SNs exhibit stable in time stimuli-responsive green fluorescence derived from the CuII-assisted assemblage of CDs. The fluorescence response of the composite SNs is sensitive to the complex formation with glutathione (GSH), enabling them to detect it with the lower limit of detection of 0.15 μM. The spin-trap-facilitated electron spin resonance technique indicated that the composite SNs are capable of self-boosting generation of ROS due to CuII→CuI reduction by carbon in low oxidation states as a part of the CDs. The intensity of the ESR signals is enhanced under the heating to 38 °C. The intensity is suppressed at the GSH concentration of 0.35 mM but is enhanced at 1.0 mM of glutathione, while it is suppressed once more at the highest intracellular concentration level of GSH (10 mM). These tendencies reveal the concentrations optimal for the scavenger or reductive potential of GSH. Flow cytometry and fluorescence and confocal microscopy methods revealed efficient cell internalization of SNs-NH2-CuII-CDs comparable with that of “free” CDs.


Author(s):  
Monique Hartley-Brown ◽  
Paul Richardson

Targeted immunotherapy has arisen over the past decade to the forefront of cancer care. Notably, targeted therapies such as antibody-drug conjugates (ADCs) are becoming more recognized for a novel approach in cancer treatment. The mechanism of action of ADCs incorporates a monoclonal antibody portion directed against the tumor cell antigen and attached to the tumoricidal portion via chemical linkage. The binding of the monoclonal antibody portion allows for tumor cell internalization of the ADC and precise release of the toxic payload within the cancer cell. Multiple myeloma (MM) is an incurable cancer for which belantamab mafodotin was the first-in-class ADC to achieve United States Food and Drug Administration (FDA) approval for treatment of this disease. Clinical trials are currently evaluating other ADCs in the treatment of MM. In this review, a look at the current ADCs being tested in MM clinical trials with a focus on those that are more promising and a potential next-in-line for FDA approval for treatment of MM is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Lin ◽  
Jie Chen ◽  
Yingying Hu ◽  
Huapan Fang ◽  
Kui Wang ◽  
...  

Polyethyleneimine (PEI) has been extensively used as a common gene carrier due to its high gene transfection efficiency. PEI1.8k shows significantly lower cytotoxicity than its high molecular weight counterparts. However, it also has the problem of low gene transfection efficiency. To address the dilemma, a highly effective crosslinker (DTME) was synthesized to react with PEI1.8k to obtain CS-PEI1.8k. The reaction showed several advantages, such as a fast process in room temperature within nine hours with the product which can directly complex with DNA after removing the solvent. The ability of CS-PEI1.8k to agglomerate with DNA was proven by particle size, zeta potential, and gel retardation assays. The cytotoxic in vitro transfection ability and cell internalization capacity of CS-PEI1.8k were tested to verify the transfection capacity of CS-PEI1.8k. Moreover, we also studied the mechanism of the relatively high level of gene transfection by this binary complex compared with PEI25k.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Huijie Yan ◽  
Michele Cacioppo ◽  
Saad Megahed ◽  
Francesca Arcudi ◽  
Luka Đorđević ◽  
...  

AbstractCarbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenyuan Wei ◽  
Yang Zhao ◽  
Peichun Hsu ◽  
Shang Guo ◽  
Chi Zhang ◽  
...  

Abstract Background Heterotopic ossification (HO) can limit joint activity, causes ankylosis and impairs the function and rehabilitation of patients. Endothelial to mesenchymal transition (EndMT) plays an important role in the pathogenesis of HO, and high expression of SMAD7(Mothers Against Decapentaplegic Homolog 7) in endothelial cells can effectively reverse the TGF-β1 mediated EndMT. This article studied an appropriately engineered exosome with high biocompatibility and good targeting property to administrate SMAD7 gene therapy to inhibit the EndMT. Methods Exosomes from mouse aortic endothelial cells were cultured and harvested. DSPE-PEG and antibody CD34 were combined to exosomes to synthesize the endothelial cell targeting exosome vector (Exosome-DSPE-PEG-AbCD34). The biocompatibility, stability, targeting and cell internalization of exosome vector were tested, then the Exosome-DSPE-PEG-AbCD34 was loaded with Smad7 plasmid and administrated to MAECs to examine its therapeutic effect on EndMT of MAEC mediated by TGF-β1. Results The Exosome-DSPE-PEG-AbCD34 has no impact on MAEC cell viability at high concentration, and exosome-DSPE-PEG-AbCD34 could be stably stored at 4°C and 37°C for at least 8 days. Exosome-DSPE-PEG-AbCD34 has better targeting property to MAEC cells and can enter into the cells more effectively. The Exosome-DSPE-PEG-AbCD34-Smad7 could significantly increase the level of SMAD7, decrease the expression of TGF-β1, and effectively reverse the EndMT of MAEC mediated by TGF- β1 in MAEC cells. Conclusions The synthesized Exosome-DSPE-PEG-AbCD34-Smad7 has good biological properties and can effectively reverse the EndMT of MAEC mediated by TGF-β1. Thus, Exosome-DSPE-PEG-AbCD34-Smad7 may has the potential for the prevention and treatment of HO.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5652
Author(s):  
Csaba Bankó ◽  
Zsolt László Nagy ◽  
Miklós Nagy ◽  
Gábor György Szemán-Nagy ◽  
István Rebenku ◽  
...  

In cancer therapy, immunogenic cell death eliminates tumor cells more efficiently than conventional apoptosis. During photodynamic therapy (PDT), some photosensitizer (PS) targeting lysosomes divert apoptosis to the immunologically more relevant necrosis-like cell death. Acridine orange (AO) is a PS targeting lysosome. We synthesized a new compound, 3-N,N-dimethylamino-6-isocyanoacridine (DM), a modified AO, aiming to target lysosomes better. To compare DM and AO, we studied optical properties, toxicity, cell internalization, and phototoxicity. In addition, light-mediated effects were monitored by the recently developed QUINESIn method on nuclei, and membrane stability, morphology, and function of lysosomes utilizing fluorescent probes by imaging cytometry in single cells. DM proved to be a better lysosomal marker at 405 nm excitation and lysed lysosomes more efficiently. AO injured DNA and histones more extensively than DM. Remarkably, DM’s optical properties helped visualize shockwaves of nuclear DNA released from cells during the PDT. The asymmetric polar modification of the AO leads to a new compound, DM, which has increased efficacy in targeting and disrupting lysosomes. Suitable AO modification may boost adaptive immune response making PDT more efficient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akram Rahmani ◽  
Fariborz Rahimi ◽  
Mehrdad Iranshahi ◽  
Houman Kahroba ◽  
Amir Zarebkohan ◽  
...  

AbstractAdjuvant-aided combination chemotherapy is one of the most effective ways of cancer treatment by overcoming the multidrug resistance (MDR) and reducing the side-effects of anticancer drugs. In this study, Conferone (Conf) was used as an adjuvant in combination with Doxorubicin (Dox) for inducing apoptosis to MDA-MB-231 cells. Herein, the novel biodegradable amphiphilic β-cyclodextrin grafted poly maleate-co-PLGA was synthesized by thiol-ene addition and ring-opening process. Micelles obtained from the novel copolymer showed exceptional properties such as small size of around 34.5 nm, CMC of 0.1 μg/mL, and cell internalization of around 100% at 30 min. These novel engineered micelles were used for combination delivery of doxorubicin-conferone with high encapsulation efficiency of near 100% for both drugs. Our results show that combination delivery of Dox and Conf to MDA-MB-231 cells had synergistic effects (CI < 1). According to cell cycle and Annexin-V apoptosis analysis, Dox-Conf loaded micelle significantly induce tumor cell apoptosis (more than 98% of cells population showed apoptosis at IC50 = 0.259 μg/mL). RT-PCR and western-blot tests show that Dox-Conf loaded βCD-g-PMA-co-PLGA micelle induced apoptosis via intrinsic pathway. Therefore, the unique design of multi-functional pH-sensitive micelles open a new perspective for the development of nanomedicine for combination chemo-adjuvant therapy against malignant cancer.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6408
Author(s):  
Cristina Fernández-Paz ◽  
Estefanía Fernández-Paz ◽  
Pablo Salcedo-Abraira ◽  
Sara Rojas ◽  
Sheila Barrios-Esteban ◽  
...  

Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal–organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1716
Author(s):  
Dalila Miele ◽  
Xin Xia ◽  
Laura Catenacci ◽  
Milena Sorrenti ◽  
Silvia Rossi ◽  
...  

Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide’s moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation.


ACS Nano ◽  
2021 ◽  
Author(s):  
Patrizia Sommi ◽  
Agostina Vitali ◽  
Stefania Coniglio ◽  
Daniele Callegari ◽  
Sofia Barbieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document