Pocketlike Active Site of Rh1/MoS2 Single-Atom Catalyst for Selective Crotonaldehyde Hydrogenation

2019 ◽  
Vol 141 (49) ◽  
pp. 19289-19295 ◽  
Author(s):  
Yang Lou ◽  
Yongping Zheng ◽  
Xu Li ◽  
Na Ta ◽  
Jia Xu ◽  
...  
2021 ◽  
Author(s):  
Jiawei Zhu ◽  
Shichun Mu

Owing to the advantage of atomic utilization, the single-atom catalyst has attracted much attention and been employed in multifarious catalytic reactions. Their definite site configuration is favorable for exploring the...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyuan Lyu ◽  
Shichao Ding ◽  
Maoyu Wang ◽  
Xiaoqing Pan ◽  
Zhenxing Feng ◽  
...  

AbstractFe-based single-atomic site catalysts (SASCs), with the natural metalloproteases-like active site structure, have attracted widespread attention in biocatalysis and biosensing. Precisely, controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’ performance. In this work, we use a facile ion-imprinting method (IIM) to synthesize isolated Fe-N-C single-atomic site catalysts (IIM-Fe-SASC). With this method, the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites. The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references. Due to its excellent properties, IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide (H2O2). Using IIM-Fe-SASC as the nanoprobe, in situ detection of H2O2 generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity. This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H2O2 detection.


Nano Energy ◽  
2022 ◽  
Vol 93 ◽  
pp. 106819
Author(s):  
Feng Li ◽  
Gao-Feng Han ◽  
Yunfei Bu ◽  
Shanshan Chen ◽  
Ishfaq Ahmad ◽  
...  

ACS Catalysis ◽  
2022 ◽  
pp. 971-981
Author(s):  
Shaowei Yang ◽  
Chen Wu ◽  
Jinhui Wang ◽  
Haidong Shen ◽  
Kai Zhu ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Benjamin C. Walker ◽  
Claire E. Walczak ◽  
Jared C. Cochran

AbstractMyosin active site elements (i.e. switch-1) bind both ATP and a divalent metal to coordinate ATP hydrolysis. ATP hydrolysis at the active site is linked via allosteric communication to the actin polymer binding site and lever arm movement, thus coupling the free energy of ATP hydrolysis to force generation. How active site motifs are functionally linked to actin binding and the power stroke is still poorly understood. We hypothesize that destabilizing switch-1 movement at the active site will negatively affect the tight coupling of ATP hydrolysis to force production. Using a metal-switch system, we tested the effect of interfering with switch-1 coordination of the divalent metal cofactor on force generation. We found that while ATPase activity increased, motility was inhibited. Our results demonstrate that a single atom change that affects the switch-1 interaction with the divalent metal directly regulates actin binding and force generation. Even slight modification of the switch-1 divalent metal coordination can decouple ATP hydrolysis from motility. Switch-1 movement is therefore critical for both structural communication with the actin binding site, as well as coupling the energy of ATP hydrolysis to force generation.


2020 ◽  
Author(s):  
Maoqi Cao ◽  
Kang Liu ◽  
Yao Song ◽  
Chao Ma ◽  
Yiyang Lin ◽  
...  

Abstract Electrochemical water splitting has drawn tremendous interest for the scalable and sustainable conversion of renewable electricity to clear hydrogen fuel and chemicals. However, the sluggishly kinetics of water dissociation step in alkaline solutions restrict severely the application of hydrogen evolution reaction (HER). Here, we designed and prepared cobalt layers with nitrogen modified atomically dispersed Mo sites (N-Mo/Co SAA) to boost the activity of HER. Density functional theory (DFT) calculations demonstrated that the N can induce the asymmetry charge localization of Moδ+ to facilitate the water dissociation. The energy barriers of water dissociation reduced from 0.48 to 0.35 eV by the charge localized Moδ+ site. High resolution transmission electron microscope (HRTEM) and synchrotron X-ray absorption spectroscopy (XAS) measurements confirmed the structure of N modified atomically dispersed Moδ+. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) measurements assessed the atomically dispersed Moδ+ site is the active site for water dissociation. Thus, the obtained N-Mo/Co catalyst exhibits record activity with 12 mV overpotential to achieve the current density of 10 mA cm− 2 and Tafel slope of 31 mV dec− 1 in alkaline media, which are superior to 32 mV overpotential for 10 mA cm− 2 and 38 mV dec− 1 Tafel slope on best commercial 20 wt% Pt/C sample in the same condition. This design strategy provided a new pathway to boost the activity of single atom alloy (SAA) by regulating the charge localization of the active site precisely at the atomic-level.


2021 ◽  
pp. 121990
Author(s):  
Ryan T. Hannagan ◽  
Yicheng Wang ◽  
Romain Réocreux ◽  
Julia Schumann ◽  
Michail Stamatakis ◽  
...  

2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2020 ◽  
Author(s):  
Jie Yang ◽  
Wenzhao Fu ◽  
Chaoqiu Chen ◽  
Wenyao Chen ◽  
Wugen Huang ◽  
...  

Abstract Rational synthesis of sub-nanocatalysts with controllable electronic and atomic structures remains a challenge to break the limits of traditional catalysts for superior performance. Here we report the atomic-level precise synthesis of Pt/graphene sub-nanocatalysts (from single atom, dimer, and to cluster) by atomic layer deposition, achieved by a novel high temperature pulsed ozone strategy to controllably pre-create abundant in-plane epoxy groups on graphene as anchoring sites. The specific in-plane epoxy structure endows the deposited Pt species with outstanding uniformity, controllability and stability. Their size-depended electronic and geometric effects have been observed for ammonia borane hydrolysis, revealing a volcano-type dependence of intrinsic activity on their sizes. Their active site structures have been identified based on extensive characterizations, dynamic compensation effect, kinetic isotope experiments and density function theory simulation. The Pt dimers show the highest catalytic activity and good durability than Pt single atoms and nanoparticles, ascribed to the unique C-Pt-Pt-O (C5Pt2O, metal-metal bond dimer) active site structure. Our work provides new insights into the precise tailoring and catalytic mechanism in sub-nanometer level.


Sign in / Sign up

Export Citation Format

Share Document