Osmotic coefficients of aqueous lithium chloride and calcium chloride from their isopiestic ratio to sodium chloride at 50.degree.C

1986 ◽  
Vol 31 (1) ◽  
pp. 54-55 ◽  
Author(s):  
Thomas M. Davis ◽  
Lisa M. Duckett ◽  
Chad E. Garvey ◽  
Jeffrey M. Hollifield ◽  
C. Stuart Patterson
1985 ◽  
Vol 30 (4) ◽  
pp. 432-434 ◽  
Author(s):  
Thomas M. Davis ◽  
Lisa M. Duckett ◽  
Judith F. Owen ◽  
C. Stuart Patterson ◽  
Robert Saleeby

1958 ◽  
Vol 36 (11) ◽  
pp. 1511-1517 ◽  
Author(s):  
A. N. Campbell ◽  
E. M. Kartzmark ◽  
E. G. Lovering

In the reciprocal salt pair Li2, K2, Cl2, SO4, and water, at 25 °C there are large areas in which potassium sulphate and potassium lithium sulphate (KLiSO4) are separately in equilibrium with solution. Two incongruent invariant points exist. At one of these the composition of the solution is 0.917 mole fraction chloride, 0.437 mole fraction lithium, and 19.4 moles of water per total mole of salt, the equilibrium solid phases being potassium chloride, potassium sulphate, and the double salt. At the second, the composition of the solution is 0.967 mole fraction chloride, 0.870 mole fraction lithium, and 13.8 moles of water per mole of salt, the solid phases being potassium chloride, double salt, and lithium sulphate monohydrate. One congruent invariant point exists, at which the composition of the solution is 1.00 mole fraction chloride, 0.960 mole fraction lithium, and 9.6 moles of water per mole of salt, the solid phases being lithium sulphate monohydrate, lithium chloride monohydrate, and potassium chloride.In the reciprocal salt pair Li2, Na2, Cl2, SO4, and water, at 25 °C there is an incongruent invariant point at which the composition of the solution is 0.873 mole fraction chloride, 0.668 mole fraction lithium, and 15.1 moles water per total mole of salt, the solid phases being sodium chloride, solid solution of sodium and lithium sulphates, and lithium sulphate monohydrate. A congruent invariant point exists, at which the composition of the solution is practically entirely lithium chloride, the solid phases present being lithium chloride monohydrate, lithium sulphate monohydrate, and sodium chloride.


2013 ◽  
Vol 43 (12) ◽  
pp. 1235-1241 ◽  
Author(s):  
L. D. Brown ◽  
R. Abdulaziz ◽  
S. Simons ◽  
D. Inman ◽  
D. J. L. Brett ◽  
...  

2015 ◽  
Vol 1119 ◽  
pp. 334-337
Author(s):  
Xu Ling Wei ◽  
Yu Li Wei ◽  
Guang Bi Gong ◽  
Tao Liang ◽  
Wen Jing Cai ◽  
...  

Powdered polychloroprene rubber (PCR-244) was prepared by the direct condensation, and the influence of agglomerator kinds and dosages on powdering of PCR-244 were investigated, including trivalent salt (aluminum chloride), divalent salt (magnesium sulfate, calcium chloride) and monovalent salt (sodium chloride, potassium chloride). The result showed that powder chloroprene rubber could be used as adhesive material that calcium chloride was used as agglomerator.


2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Bahia & Naser

A laboratory experiment was carried out at the Department of Soil Sciences and Water Resources, College of Agriculture, University of Baghdad. Silty clay soil was treated with three salt solutions (NaCl, CaCl2 and mixed NaCl–CaCl2). Homogeneously packed soil columns (10 cm, 40 cm) were leached six times using tap water. Effluent samples were collected to determine ion concentration Cl-, Ca++, Na+, K+ and Mg++. Breakthrough curves were used to estimate solute transport parameters (retardation factor, peclet number) using an analytical solution of convection-dispersion equation (CDE) by CXTFIT program. The results showed that relative concentration of chloride was increased rapidly with calcium chloride, which increased sodium leaching rate at starting of breakthrough curve. Sodium chloride increased water requirements for calcium displacement. Results indicated a good fitting of convection-dispersion equation with breakthrough curves data. The best-fit were used to calculate peclet number, retardation factor and dispersion coefficient. When soil was treated with calcium chloride, Peclet number of chloride was increased from 3.13 to 6.48, while it has been decreased for calcium, sodium and potassium. Sodium chloride decreased peclet numbers of chloride, calcium and sodium. Also mixed salts increased sodium peclet number from 1.01 to 9.02. Results showed, calcium chloride decreased retardation factor of chloride from 1.59 to 0.50, while it has been increased from 1.39, 1.58 to 175.00, 493.36 for each of sodium and potassium, respectively. Retardation factor of calcium was decreased when soil was treated with sodium chloride or mixed salts. Dispersion coefficient was decreased for chloride, and increased for calcium and magnesium. When soil was treated with calcium chloride, dispersion coefficients have been increased from 24.29, 25.56 to 40.51, 40.89 cm2hr-1 for sodium and potassium, respectively.


Author(s):  
Salil Desai ◽  
Anthony Moore ◽  
Benjamin Harrison ◽  
Jagannathan Sankar

This paper focuses on understanding microdroplet formation of sodium alginate biopolymer at various concentrations utilizing drop-on-demand inkjet technology. We investigate the effect of sodium chloride on the rheology of sodium alginate and derive a correlation between the size of the droplet versus the size of the microcapsules formed. Varying sizes of microcapsules are formed based on different concentrations of calcium chloride solvent. This understanding will give insight for fabricating drug delivery capsules and tissue scaffolds that are subject to extreme ambient conditions when interfaced with in-vivo environments.


Development ◽  
1956 ◽  
Vol 4 (1) ◽  
pp. 93-95
Author(s):  
Richard G. Ham ◽  
Robert E. Eakin

Lallier (1954) has shown that 0·4 M lithium chloride strongly inactivates glyceraldehyde phosphate dehydrogenase—a finding which might partially explain some of the developmental changes found in lithium-treated embryos. In an attempt to establish an enzymatic basis for the morphological effects of lithium ion on Hydra which have been observed in this laboratory (Ham & Eakin, 1955), we have repeated the enzyme study with lithium chloride and extended it to include a number of other salts as controls. From typical data (Table 1), it is obvious that the inhibition of glyceraldehyde phosphate dehydrogenase activity is in no way a specific effect due to lithium ions. Both sodium chloride and potassium chloride produced a greater inhibition than did lithium chloride. From the various sodium salts tested, it was found that the anion may be of more importance than the cation in determining the degree of inhibition, although the cation also has some effect.


Sign in / Sign up

Export Citation Format

Share Document