Inhibition of Glyceraldehyde Phosphate Dehydrogenase by Salts other than Lithium Chloride

Development ◽  
1956 ◽  
Vol 4 (1) ◽  
pp. 93-95
Author(s):  
Richard G. Ham ◽  
Robert E. Eakin

Lallier (1954) has shown that 0·4 M lithium chloride strongly inactivates glyceraldehyde phosphate dehydrogenase—a finding which might partially explain some of the developmental changes found in lithium-treated embryos. In an attempt to establish an enzymatic basis for the morphological effects of lithium ion on Hydra which have been observed in this laboratory (Ham & Eakin, 1955), we have repeated the enzyme study with lithium chloride and extended it to include a number of other salts as controls. From typical data (Table 1), it is obvious that the inhibition of glyceraldehyde phosphate dehydrogenase activity is in no way a specific effect due to lithium ions. Both sodium chloride and potassium chloride produced a greater inhibition than did lithium chloride. From the various sodium salts tested, it was found that the anion may be of more importance than the cation in determining the degree of inhibition, although the cation also has some effect.

Carbon ◽  
2021 ◽  
Vol 176 ◽  
pp. 651
Author(s):  
Qi Liang ◽  
Er-hui Zhang ◽  
Guang Yan ◽  
Yong-zhen Yang ◽  
Wei-feng Liu ◽  
...  

2021 ◽  
Author(s):  
Weixin Zhang ◽  
Lin Wu ◽  
Dujin Qiao ◽  
Jie Tian ◽  
Yan Li ◽  
...  

Safety issues limit the large-scale application of lithium-ion batteries. In this work, a new type of N-H-microcapsule fire extinguishing agent is prepared by using melamine-urea-formaldehyde resin as shell material, perfluoro(2-methyl-3-pentanone)...


1958 ◽  
Vol 36 (11) ◽  
pp. 1511-1517 ◽  
Author(s):  
A. N. Campbell ◽  
E. M. Kartzmark ◽  
E. G. Lovering

In the reciprocal salt pair Li2, K2, Cl2, SO4, and water, at 25 °C there are large areas in which potassium sulphate and potassium lithium sulphate (KLiSO4) are separately in equilibrium with solution. Two incongruent invariant points exist. At one of these the composition of the solution is 0.917 mole fraction chloride, 0.437 mole fraction lithium, and 19.4 moles of water per total mole of salt, the equilibrium solid phases being potassium chloride, potassium sulphate, and the double salt. At the second, the composition of the solution is 0.967 mole fraction chloride, 0.870 mole fraction lithium, and 13.8 moles of water per mole of salt, the solid phases being potassium chloride, double salt, and lithium sulphate monohydrate. One congruent invariant point exists, at which the composition of the solution is 1.00 mole fraction chloride, 0.960 mole fraction lithium, and 9.6 moles of water per mole of salt, the solid phases being lithium sulphate monohydrate, lithium chloride monohydrate, and potassium chloride.In the reciprocal salt pair Li2, Na2, Cl2, SO4, and water, at 25 °C there is an incongruent invariant point at which the composition of the solution is 0.873 mole fraction chloride, 0.668 mole fraction lithium, and 15.1 moles water per total mole of salt, the solid phases being sodium chloride, solid solution of sodium and lithium sulphates, and lithium sulphate monohydrate. A congruent invariant point exists, at which the composition of the solution is practically entirely lithium chloride, the solid phases present being lithium chloride monohydrate, lithium sulphate monohydrate, and sodium chloride.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Cheng Lin ◽  
Aihua Tang ◽  
Hao Mu ◽  
Wenwei Wang ◽  
Chun Wang

Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI) and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.


2016 ◽  
Vol 18 (16) ◽  
pp. 10846-10849 ◽  
Author(s):  
Christos D. Malliakas ◽  
Kevin Leung ◽  
Krzysztof Z. Pupek ◽  
Ilya A. Shkrob ◽  
Daniel P. Abraham

We report delayed spontaneous formation of solvate coordination polymers of lithium ions and their aggregation and phase separation in fluorinated electrolytes.


1992 ◽  
Vol 286 ◽  
Author(s):  
C. Criado ◽  
J.R. Ramos-Barrado ◽  
P. Maireles-Torres ◽  
P. Oliverapastor ◽  
A. Jimenez-Lopez ◽  
...  

ABSTRACTA.c. conductivity of a novel large-pore alumina-pillared zirconium phosphate and some lithium ion exchanged samples have been measured by an impedance method. These materials have a conductivity in the range 10-5 to 10-9 Ω-1cm-1 higher than those of alumina-pillared tin phosphate and its lithium derivatives. The electrical behaviour of the pillared zirconium phosphates fits to an equivalent circuit composed by two subcircuits in parallel with a condenser. In a temperature interval (200-500°C), lithium ions are charge carriers and the conductivity increases when heating with activation energies between 0.99 and 1.22 eV.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edda Winter ◽  
Philipp Seipel ◽  
Tatiana Zinkevich ◽  
Sylvio Indris ◽  
Bambar Davaasuren ◽  
...  

Abstract Various nuclear magnetic resonance (NMR) methods are combined to study the structure and dynamics of Li1.5Al0.5Ti1.5(PO4)3 (LATP) samples, which were obtained from sintering at various temperatures between 650 and 900 °C. 6Li, 27Al, and 31P magic angle spinning (MAS) NMR spectra show that LATP crystallites are better defined for higher calcination temperatures. Analysis of 7Li spin-lattice relaxation and line-shape changes indicates the existence of two species of lithium ions with clearly distinguishable jump dynamics, which can be attributed to crystalline and amorphous sample regions, respectively. An increase of the sintering temperature leads to higher fractions of the fast lithium species with respect to the slow one, but hardly affects the jump dynamics in either of the phases. Specifically, the fast and slow lithium ions show jumps in the nanoseconds regime near 300 and 700 K, respectively. The activation energy of the hopping motion in the LATP crystallites amounts to ca. 0.26 eV. 7Li field-gradient diffusometry reveals that the long-range ion migration is limited by the sample regions featuring slow transport. The high spatial resolution available from the high static field gradients of our setup allows the observation of the lithium ion diffusion inside the small (<100 nm) LATP crystallites, yielding a high self-diffusion coefficient of D = 2 × 10−12 m2/s at room temperature.


2021 ◽  
Author(s):  
Yu Gao ◽  
Jun Huang ◽  
Yuwen Liu ◽  
Shengli Chen

The discrepancy between the trend in the diffusion coefficient of lithium ion (DLi+) and that in the activation energy of ion hopping signals hidden factors determining ion transport kinetics in...


2018 ◽  
Vol 5 (8) ◽  
pp. 180311 ◽  
Author(s):  
Chunfeng Yan ◽  
Tao Huang ◽  
Xiangzhen Zheng ◽  
Cuiran Gong ◽  
Maoxiang Wu

Waterborne polyurethane (WPU) is first used as a carbon-coating source for micrometre-sized silicon. The remaining nitrogen (N) and oxygen (O) heteroatoms during pyrolysis of the WPU interact with the surface oxide on the silicon (Si) particles via hydrogen bonding (Si–OH⋯N and Si–OH⋯O). The N and O atoms involved in the carbon network can interact with the lithium ions, which is conducive to lithium-ion insertion. A satisfactory performance of the Si@N, O-doped carbon (Si@CNO) anode is gained at 25 and 55°C. The Si@CNO anode shows stable cycling performance (capacity retention of 70.0% over 100 cycles at 25°C and 60.3% over 90 cycles at 55°C with a current density of 500 mA g −1 ) and a superior rate capacity of 864.1 mA h g −1 at 1000 mA g −1 (25°C). The improved electrochemical performance of the Si@CNO electrode is attributed to the enhanced electrical conductivity and structural stability.


Sign in / Sign up

Export Citation Format

Share Document