Structure-Based Design, Synthesis, and Evaluation of Conformationally Constrained Mimetics of the Second Mitochondria-Derived Activator of Caspase That Target the X-Linked Inhibitor of Apoptosis Protein/Caspase-9 Interaction Site

2004 ◽  
Vol 47 (17) ◽  
pp. 4147-4150 ◽  
Author(s):  
Haiying Sun ◽  
Zaneta Nikolovska-Coleska ◽  
Chao-Yie Yang ◽  
Liang Xu ◽  
York Tomita ◽  
...  
2001 ◽  
Vol 152 (3) ◽  
pp. 483-490 ◽  
Author(s):  
Paul G. Ekert ◽  
John Silke ◽  
Christine J. Hawkins ◽  
Anne M. Verhagen ◽  
David L. Vaux

MIHA is an inhibitor of apoptosis protein (IAP) that can inhibit cell death by direct interaction with caspases, the effector proteases of apoptosis. DIABLO is a mammalian protein that can bind to IAPs and antagonize their antiapoptotic effect, a function analogous to that of the proapoptotic Drosophila molecules, Grim, Reaper, and HID. Here, we show that after UV radiation, MIHA prevented apoptosis by inhibiting caspase 9 and caspase 3 activation. Unlike Bcl-2, MIHA functioned after release of cytochrome c and DIABLO from the mitochondria and was able to bind to both processed caspase 9 and processed caspase 3 to prevent feedback activation of their zymogen forms. Once released into the cytosol, DIABLO bound to MIHA and disrupted its association with processed caspase 9, thereby allowing caspase 9 to activate caspase 3, resulting in apoptosis.


2013 ◽  
Vol 23 (14) ◽  
pp. 4253-4257 ◽  
Author(s):  
Robert J. Ardecky ◽  
Kate Welsh ◽  
Darren Finlay ◽  
Pooi San Lee ◽  
Marcos González-López ◽  
...  

2001 ◽  
Vol 21 (13) ◽  
pp. 4292-4301 ◽  
Author(s):  
Bettina W. M. Richter ◽  
Samy S. Mir ◽  
Lisa J. Eiben ◽  
Jennifer Lewis ◽  
Stephanie Birkey Reffey ◽  
...  

ABSTRACT Inhibitor of apoptosis protein (IAP)-like protein-1 (ILP-1) (also known as X-linked IAP [XIAP] and mammalian IAP homolog A [MIHA]) is a potent inhibitor of apoptosis and exerts its effects, at least in part, by the direct association with and inhibition of specific caspases. Here, we describe the molecular cloning and characterization of a human gene related to ILP-1, termed ILP-2. Despite high homology to ILP-1, ILP-2 is encoded by a distinct gene, which in normal tissues is expressed solely in testis. In contrast to ILP-1, overexpression of ILP-2 had no protective effect on apoptosis mediated by Fas (also known as CD95) or tumor necrosis factor. However, ILP-2 potently inhibited apoptosis induced by overexpression of Bax or by coexpression of caspase 9 with Apaf-1, and preincubation of cytosolic extracts with ILP-2 abrogated caspase activation in vitro. A processed form of caspase 9 could be coprecipitated with ILP-2 from cells, suggesting a physical interaction between ILP-2 and caspase 9. Thus, ILP-2 is a novel IAP family member with restricted specificity for caspase 9.


2001 ◽  
Vol 353 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Hong LIN ◽  
Catheryne CHEN ◽  
Ben D.-M. CHEN

In this study we investigated the underlying mechanisms that confer resistance on mature macrophages with the use of macrophage colony-stimulating factor (M-CSF)-induced bone marrow-derived macrophages (BMDM). In the presence of M-CSF, immature precursor cells were induced to undergo proliferation and differentiation into mature macrophages in vitro with cell morphology similar to that of tissue macrophages by day 7Ő10. Immunoblot analyses showed that bone marrow precursors express appreciable levels of caspase-3 and caspase-9 but no or very low levels of c-fms (M-CSF receptor) and the apoptosis regulators X-linked inhibitor of apoptosis protein (XIAP), c-IAP-1, Bcl-2 and Bax. The differentiation of BMDM is associated with a steady and gradual increase in the levels of c-fms, XIAP, c-IAP-1, Bcl-2 and Bax, reaching maximal levels by day 7. However, the levels of caspase-3 and caspase-9 stayed essentially unchanged even after prolonged incubation (more than 10 days) with M-CSF. Unlike bone marrow precursor cells, mature BMDM (day 7Ő10) were resistant to apoptosis induced by M-CSF depletion, which includes the activation of caspase-3 and caspase-9 and the degradation of XIAP, Bcl-2 and Bax proteins in the process. Treatment of day 7 BMDM with XIAP anti-sense oligonucleotides (oligos), but not sense oligos, partly abolished their resistance to apoptosis. By using a gel-shift assay and a specific nuclear factor κB (NF-κB) inhibitor, we demonstrated that NF-κB activity is responsible for the up-regulation of XIAP in M-CSF-treated macrophages. In addition, treatment of starved macrophages with M-CSF induced a rapid phosphorylation of Akt kinase before the activation of NF-κB. Our results showed that XIAP is one of the anti-apoptotic regulators that confer resistance on mature macrophages by M-CSF.


2020 ◽  
Vol 38 (5) ◽  
pp. 1350-1364 ◽  
Author(s):  
Agnieszka Łupicka-Słowik ◽  
Mateusz Psurski ◽  
Renata Grzywa ◽  
Monika Cuprych ◽  
Jarosław Ciekot ◽  
...  

Summary One of the strategies employed by novel anticancer therapies is to put the process of apoptosis back on track by blocking the interaction between inhibitor of apoptosis proteins (IAPs) and caspases. The activity of caspases is modulated by the caspases themselves in a caspase/procaspase proteolytic cascade and by their interaction with IAPs. Caspases can be released from the inhibitory influence of IAPs by proapoptotic proteins such as secondary mitochondrial activator of caspases (Smac) that share an IAP binding motif (IBM). The main purpose of the present study was the design and synthesis of phosphorus-based peptidyl antagonists of IAPs that mimic the endogenous Smac protein, which blocks the interaction between IAPs and caspases. Based on the structure of the IAP antagonist and recently reported thiadiazole derivatives, we designed and evaluated the biochemical properties of a series of phosphonic peptides bearing the N-Me-Ala-Val/Chg-Pro-OH motif (Chg: cyclohexylglycine). The ability of the obtained compounds to interact with the binding groove of the X-linked inhibitor of apoptosis protein baculovirus inhibitor of apoptosis protein repeat (XIAP BIR3) domain was examined by a fluorescence polarization assay, while their potential to induce autoubiquitination followed by proteasomal degradation of cellular IAP1 was examined using the MDA-MB-231 breast cancer cell line. The highest potency against BIR3 was observed among peptides containing C-terminal phosphonic phenylalanine analogs, which displayed nanomolar Ki values. Their antiproliferative potential as well as their proapoptotic action, manifested by an increase in caspase-3 activity, was examined using various cell lines.


Sign in / Sign up

Export Citation Format

Share Document