scholarly journals The Membrane-associated Inhibitor of Apoptosis Protein, BRUCE/Apollon, Antagonizes Both the Precursor and Mature Forms of Smac and Caspase-9

2004 ◽  
Vol 280 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Xiao-Bo Qiu ◽  
Alfred L. Goldberg
2001 ◽  
Vol 152 (3) ◽  
pp. 483-490 ◽  
Author(s):  
Paul G. Ekert ◽  
John Silke ◽  
Christine J. Hawkins ◽  
Anne M. Verhagen ◽  
David L. Vaux

MIHA is an inhibitor of apoptosis protein (IAP) that can inhibit cell death by direct interaction with caspases, the effector proteases of apoptosis. DIABLO is a mammalian protein that can bind to IAPs and antagonize their antiapoptotic effect, a function analogous to that of the proapoptotic Drosophila molecules, Grim, Reaper, and HID. Here, we show that after UV radiation, MIHA prevented apoptosis by inhibiting caspase 9 and caspase 3 activation. Unlike Bcl-2, MIHA functioned after release of cytochrome c and DIABLO from the mitochondria and was able to bind to both processed caspase 9 and processed caspase 3 to prevent feedback activation of their zymogen forms. Once released into the cytosol, DIABLO bound to MIHA and disrupted its association with processed caspase 9, thereby allowing caspase 9 to activate caspase 3, resulting in apoptosis.


2001 ◽  
Vol 21 (13) ◽  
pp. 4292-4301 ◽  
Author(s):  
Bettina W. M. Richter ◽  
Samy S. Mir ◽  
Lisa J. Eiben ◽  
Jennifer Lewis ◽  
Stephanie Birkey Reffey ◽  
...  

ABSTRACT Inhibitor of apoptosis protein (IAP)-like protein-1 (ILP-1) (also known as X-linked IAP [XIAP] and mammalian IAP homolog A [MIHA]) is a potent inhibitor of apoptosis and exerts its effects, at least in part, by the direct association with and inhibition of specific caspases. Here, we describe the molecular cloning and characterization of a human gene related to ILP-1, termed ILP-2. Despite high homology to ILP-1, ILP-2 is encoded by a distinct gene, which in normal tissues is expressed solely in testis. In contrast to ILP-1, overexpression of ILP-2 had no protective effect on apoptosis mediated by Fas (also known as CD95) or tumor necrosis factor. However, ILP-2 potently inhibited apoptosis induced by overexpression of Bax or by coexpression of caspase 9 with Apaf-1, and preincubation of cytosolic extracts with ILP-2 abrogated caspase activation in vitro. A processed form of caspase 9 could be coprecipitated with ILP-2 from cells, suggesting a physical interaction between ILP-2 and caspase 9. Thus, ILP-2 is a novel IAP family member with restricted specificity for caspase 9.


2001 ◽  
Vol 353 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Hong LIN ◽  
Catheryne CHEN ◽  
Ben D.-M. CHEN

In this study we investigated the underlying mechanisms that confer resistance on mature macrophages with the use of macrophage colony-stimulating factor (M-CSF)-induced bone marrow-derived macrophages (BMDM). In the presence of M-CSF, immature precursor cells were induced to undergo proliferation and differentiation into mature macrophages in vitro with cell morphology similar to that of tissue macrophages by day 7Ő10. Immunoblot analyses showed that bone marrow precursors express appreciable levels of caspase-3 and caspase-9 but no or very low levels of c-fms (M-CSF receptor) and the apoptosis regulators X-linked inhibitor of apoptosis protein (XIAP), c-IAP-1, Bcl-2 and Bax. The differentiation of BMDM is associated with a steady and gradual increase in the levels of c-fms, XIAP, c-IAP-1, Bcl-2 and Bax, reaching maximal levels by day 7. However, the levels of caspase-3 and caspase-9 stayed essentially unchanged even after prolonged incubation (more than 10 days) with M-CSF. Unlike bone marrow precursor cells, mature BMDM (day 7Ő10) were resistant to apoptosis induced by M-CSF depletion, which includes the activation of caspase-3 and caspase-9 and the degradation of XIAP, Bcl-2 and Bax proteins in the process. Treatment of day 7 BMDM with XIAP anti-sense oligonucleotides (oligos), but not sense oligos, partly abolished their resistance to apoptosis. By using a gel-shift assay and a specific nuclear factor κB (NF-κB) inhibitor, we demonstrated that NF-κB activity is responsible for the up-regulation of XIAP in M-CSF-treated macrophages. In addition, treatment of starved macrophages with M-CSF induced a rapid phosphorylation of Akt kinase before the activation of NF-κB. Our results showed that XIAP is one of the anti-apoptotic regulators that confer resistance on mature macrophages by M-CSF.


Author(s):  
Ganesh S. Jevalikar ◽  
Margaret Zacharin ◽  
Mary White ◽  
Steven W. Yau ◽  
Winnie Li ◽  
...  

AbstractWe analyzed mRNA expression of X-linked inhibitor of apoptosis protein (XIAP) in patients with Turner syndrome (TS) and examined its association with phenotypic features.XIAP mRNA expression levels were investigated in 98 patients with TS in total RNA extracted from blood leucocytes by real time quantitative polymerase chain reaction.Levels of XIAP mRNA were significantly lower in patients with bicuspid aortic valves (BAV; n=13) than those without (log XIAP –1.17±0.3 vs. –0.94±0.2, p=0.002). Significantly higher expression of XIAP mRNA was seen in patients with a mosaic karyotype and renal malformations (log XIAP –0.79±0.3 vs. –1.0±0.3, p=0.03). No correlations were seen between XIAP and other manifestations.Abnormal expression of XIAP may be an important underlying mechanism in the development of BAV and renal malformations in TS. However, abnormal XIAP mRNA expression, as determined from peripheral mononuclear cells, does not appear to explain all the somatic and visceral stigmata of TS.


Sign in / Sign up

Export Citation Format

Share Document