An Efficient Nitration of Light Alkanes and the Alkyl Side-Chain of Aromatic Compounds with Nitrogen Dioxide and Nitric Acid Catalyzed byN-Hydroxyphthalimide

2002 ◽  
Vol 67 (16) ◽  
pp. 5663-5668 ◽  
Author(s):  
Yoshiki Nishiwaki ◽  
Satoshi Sakaguchi ◽  
Yasutaka Ishii
1985 ◽  
Vol 38 (4) ◽  
pp. 587 ◽  
Author(s):  
MP Hartshorn ◽  
JM Readman ◽  
WT Robinson ◽  
J Vaughan

Nitration of 1,2,3,5-tetramethylbenzene (2a) with fuming nitric acid gives the tetramethylnitrobenzene (22), products of side-chain modification (23)-(27), the rearranged 6,6-dimethylcyclohexenones (8), (28), (29) and (30), and 2,3,4,6-tetramethyl ketone derivatives (10)- (13), (31) and (32). Reaction of 2,3,4,6-tetramethylphenol (7) with nitrogen dioxide gives the hydroxy dinitro ketone (9) in addition to the trinitrocyclohexenones (11)-(14) and (19). X-ray crystal structures are reported for compounds (11), (19), (28), (29), (30) and (32). 1H n.m.r ./stereochemistry correlations are reported for some 2,5-dinitro- and 2,5,6-trinitro-cyclohex-3-enones.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1338 ◽  
Author(s):  
Alfonso Cornejo ◽  
Fernando Bimbela ◽  
Rui Moreira ◽  
Karina Hablich ◽  
Íñigo García-Yoldi ◽  
...  

Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from Populus salicaceae. Pinus radiata and Pinus pinaster from industrial wastes and biorefinery effluents were isolated and characterized. Lignin was depolymerized using homogenous (NaOH) and heterogeneous (Ni-, Cu- or Ni-Cu-hydrotalcites) base catalysis and catalytic hydrogenolysis using Ru/C. When homogeneous base catalyzed depolymerization (BCD) and Ru/C hydrogenolysis were combined on poplar lignin, the aromatics amount was ca. 11 wt.%. Monomer distributions changed depending on the feedstock and the reaction conditions. Aqueous NaOH produced cleavage of the alkyl side chain that was preserved when using modified hydrotalcite catalysts or Ru/C-catalyzed hydrogenolysis in ethanol. Depolymerization using hydrotalcite catalysts in ethanol produced monomers bearing carbonyl groups on the alkyl side chain. The analysis of the reaction mixtures was done by size exclusion chromatography (SEC) and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR). 31P NMR and heteronuclear single quantum coherence spectroscopy (HSQC) were also used in this study. The content in poly-(hydroxy)-aromatic ethers in the reaction mixtures decreased upon thermal treatments in ethanol. It was concluded that thermo-solvolysis is key in lignin depolymerization, and that the synergistic effect of Ni and Cu provided monomers with oxidized alkyl side chains.


2004 ◽  
Vol 6 (9) ◽  
pp. 1485-1487 ◽  
Author(s):  
Hironao Sajiki ◽  
Fumiyo Aoki ◽  
Hiroyoshi Esaki ◽  
Tomohiro Maegawa ◽  
Kosaku Hirota

2010 ◽  
Vol 10 (10) ◽  
pp. 4741-4756 ◽  
Author(s):  
E. Remsberg ◽  
M. Natarajan ◽  
B. T. Marshall ◽  
L. L. Gordley ◽  
R. E. Thompson ◽  
...  

Abstract. The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 are described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. In particular, the findings for middle and upper stratospheric NO2 should also be more compatible with those obtained from more recent satellite sensors because the effects of the spin-splitting of the NO2 lines are accounted for now with the LIMS V6 algorithm. The improved precisions and more frequent retrievals of the LIMS profiles along their orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be studied quantitatively throughout the stratosphere with the LIMS V6 data.


2021 ◽  
Vol 5 (7) ◽  
pp. 3050-3060 ◽  
Author(s):  
Chenyu Han ◽  
Huanxiang Jiang ◽  
Pengchao Wang ◽  
Lu Yu ◽  
Jianxiao Wang ◽  
...  

An alkyl isomerization strategy is reported to finely modulate the crystallinity of nonfullerene acceptors as well as their photovoltaic responses to post-treatments.


Sign in / Sign up

Export Citation Format

Share Document