Synthesis and Photovoltaic Properties of Efficient Organic Dyes Containing the Benzo[b]furan Moiety for Solar Cells

2007 ◽  
Vol 72 (10) ◽  
pp. 3652-3658 ◽  
Author(s):  
Il Jung ◽  
Jae Kwan Lee ◽  
Kyu Ho Song ◽  
Kihyung Song ◽  
Sang Ook Kang ◽  
...  
2019 ◽  
Vol 48 (6) ◽  
pp. 481-486 ◽  
Author(s):  
Mozhgan Hosseinnezhad ◽  
Hanieh Shaki

Purpose The purpose of this paper is to study the substituent effect in dye-sensitized solar cells’ (DSSCs) performance. For this end, three new metal organic dyes with DPA structure were synthesized. For investigation of the substituent effect, two different anchoring groups, namely, 1,3-dioxo-1Hbenz[de]isoquinolin-2(3H)-yl)benzenesulfonamides and 1,8-naphthalimide, were used. Design/methodology/approach Three organic dyes based on azo were selected, which contain various electron donor groups. Absorption properties of purified dyes were studied in solution and on photoelectrode (TiO2 and ZnO) substrate. DSSCs were prepared to determine the photovoltaic performance of each photosensitizer. Findings The results showed that all organic dyes form J-aggregation on the photoanode substrate. Cyclic voltammetry results for all organic dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of photo-electric conversion. The results illustrate conversion efficiencies of cells based on solution Dyes 1, 2 and 3 and TiO2 as 3.44, 4.71 and 4.82 per cent, respectively. The conversion efficiencies of cells based on solution Dye 1, 2 and 3 and ZnO are 3.21, 4.09 and 4.14 per cent, respectively. Practical implications In this study, the development of effect of assembling materials, offering improved photovoltaic properties. Social implications Organic dye attracts more and more attention because of its low-cost, facile route synthesis and less-hazardous properties. Originality/value To the best of the authors’ knowledge, the effect of anchoring agent and nanostructure on DSSCs performance was investigated for the first time.


2019 ◽  
Vol 72 (4) ◽  
pp. 244
Author(s):  
Ihssène Ouared ◽  
Mâammar Rekhis ◽  
Mohamed Trari

In this paper, six organic dyes have been studied by density functional theory (DFT). The electron-acceptor group is the cyanoacrylic acid unit for all sensitisers, and the electron-donor unit is a phenothiazine (PTZ) fragment substituted by an ethynyl-pyrene unit; the π-linker was varied, and the influence was investigated. The dye bearing the divinylthiophene linker showed the highest absorption maximum. The theoretical photovoltaic properties revealed that the overall efficiency of the solar cell could be remarkably improved using the designed dyes. The results indicated that all of the studied organic dyes are good candidates as photosensitisers for dye-sensitised solar cells (DSSCs).


2009 ◽  
Vol 11 (1) ◽  
pp. 97-100 ◽  
Author(s):  
Jiann T. Lin ◽  
Pin-Cheng Chen ◽  
Yung-Sheng Yen ◽  
Ying-Chan Hsu ◽  
Hsien-Hsin Chou ◽  
...  

2017 ◽  
Vol 46 (5) ◽  
pp. 393-398 ◽  
Author(s):  
Mozhgan Hosseinnezhad ◽  
Kamaladin Gharanjig

Purpose The purpose of this paper is to study assembling parameters in dye-sensitised solar cells (DSSCs) performance. For this end, 3a,7a-dihydroxy-5ß-cholanic acid (cheno) are selected as anti-aggregation agent and two solutions, namely, tetrabutyl ammonium iodide and (PMII)IL used as electrolyte. Design/methodology/approach A series of organic dyes were selected using N-substituents carbazole as electron donor group and acrylic acid and cyanoacrylic acid as electron acceptor groups. Absorption properties of purified dyes were studied in solution and on photoelectrode substrate. DSSCs were prepared in the presence of anti-aggregation agent and different electrolyte to determine the photovoltaic performance of each dyes. Findings The results showed that all organic dyes form J-aggregation on the photoanode substrate in the absence of anti-aggregation agent and the amounts of aggregation were reduced in the presence of anti-aggregation agent. DSSCs were fabricated in the presence of anti-aggregation agent. The photovoltaic properties were improved using tetrabutyl ammonium iodide as electrolyte. The maximum power conversion efficiency was achieved for D12 in the presence of cheno and tetrabutyl ammonium iodide as anti-aggregation agent and electrolyte, respectively. Social implications Organic dye attracts more and more attention due to low cost, facile route synthesis and less hazardous. Originality/value The effect of anti-aggregation agent and electrolyte on DSSCs performance was investigated for the first time.


Tetrahedron ◽  
2015 ◽  
Vol 71 (42) ◽  
pp. 7977-7984 ◽  
Author(s):  
Sandeep B. Mane ◽  
Chih-Fu Cheng ◽  
Albertus Adrian Sutanto ◽  
Amitabha Datta ◽  
Amitava Dutta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document