ammonium iodide
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5737
Author(s):  
Maria Bidikoudi ◽  
Carmen Simal ◽  
Vasillios Dracopoulos ◽  
Elias Stathatos

Perovskite solar cells that use carbon (C) as a replacement of the typical metal electrodes, which are most commonly employed, have received growing interest over the past years, owing to their low cost, ease of fabrication and high stability under ambient conditions. Even though Power Conversion Efficiencies (PCEs) have increased over the years, there is still room for improvement, in order to compete with metal-based devices, which exceed 25% efficiency. With the scope of increasing the PCE of Carbon based Perovskite Solar Cells (C-PSCs), in this work we have employed a series of ammonium iodides (ammonium iodide, ethylammonium iodide, tetrabutyl ammonium iodide, phenethylammonium iodide and 5-ammonium valeric acid iodide) as additives in the multiple cation-mixed halide perovskite precursor solution. This has led to a significant increase in the PCE of the corresponding devices, by having a positive impact on the photocurrent values obtained, which exhibited an increase exceeding 20%, from 19.8 mA/cm2, for the reference perovskite, to 24 mA/cm2, for the additive-based perovskite. At the same time, the ammonium iodide salts were used in a post-treatment method. By passivating the defects, which provide charge recombination centers, an improved performance of the C-PSCs has been achieved, with enhanced FF values reaching 59%, which is a promising result for C-PSCs, and Voc values up to 850 mV. By combining the results of these parallel investigations, C-PSCs of the triple mesoscopic structure with a PCE exceeding 10% have been achieved, while the in-depth investigation of the effects of ammonium iodides in this PSC structure provide a fruitful insight towards the optimum exploitation of interface and bulk engineering, for high efficiency and stable C-PSCs, with a structure that is favorable for large area applications.


2021 ◽  
Vol 22 (14) ◽  
pp. 7344
Author(s):  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Muhammad Yasir ◽  
Md. Musfizur Hassan ◽  
Manjulatha Sara ◽  
...  

The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 μM (2.9 and 5.6 μg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 μM (8.5 μg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 μM. It also disrupted 44% of pre-established S. aureus biofilms at 32 μM and 28% of pre-established E. coli biofilms 64 μM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 342
Author(s):  
Maximilian Kuner ◽  
Susanne Kühn ◽  
Hajo Haase ◽  
Klas Meyer ◽  
Matthias Koch

Ergot alkaloids are mycotoxins formed by fungi of the Claviceps genus, which are some of the most common contaminants of food and feed worldwide. These toxins are a structurally heterogeneous group of compounds, sharing an ergoline backbone. Six structures and their corresponding stereoisomers are typically quantified by either HPLC-FLD or HPLC-MS/MS and the values subsequently summed up to determine the total ergot alkaloid content. For the development of a screening method targeting all ergot alkaloids simultaneously, the alkaloids need to be transferred to one homogeneous structure: a lysergic acid derivative. In this study, two promising cleaving methods—acidic esterification and hydrazinolysis—are compared, using dihydroergocristine as a model compound. While the acidic esterification proved to be unsuitable, due to long reaction times and oxidation sensitivity, hydrazinolysis reached a quantitative yield in 40‒60 min. Parallel workup of several samples is possible. An increasing effect on the reaction rate by the addition of ammonium iodide was demonstrated. Application of hydrazinolysis to a major ergot alkaloid mix solution showed that all ergopeptines were cleaved, but ergometrine/-inine was barely affected. Still, hydrazinolysis is a suitable tool for the development of a sum parameter screening method for ergot alkaloids in food and feed.


ACS Omega ◽  
2021 ◽  
Author(s):  
Feng Gao ◽  
Ke Liu ◽  
Ruzhou Cheng ◽  
Xi Zhou ◽  
Xiaoting Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document