Utilizing the Charge Field Effect on Amide15N Chemical Shifts for Protein Structure Validation

2009 ◽  
Vol 113 (1) ◽  
pp. 347-358 ◽  
Author(s):  
Reto Bader
2012 ◽  
Vol 116 (16) ◽  
pp. 4754-4759 ◽  
Author(s):  
Aleksandr B. Sahakyan ◽  
Andrea Cavalli ◽  
Wim F. Vranken ◽  
Michele Vendruscolo

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84123 ◽  
Author(s):  
Anders S. Christensen ◽  
Troels E. Linnet ◽  
Mikael Borg ◽  
Wouter Boomsma ◽  
Kresten Lindorff-Larsen ◽  
...  

2012 ◽  
Vol 8 (20) ◽  
pp. 984-987 ◽  
Author(s):  
Tapobrata Lahiri ◽  
◽  
Kalpana Singh ◽  
Manoj Kumar Pal ◽  
Gaurav Verma

2012 ◽  
Vol 21 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Anurag Bagaria ◽  
Victor Jaravine ◽  
Yuanpeng J. Huang ◽  
Gaetano T. Montelione ◽  
Peter Güntert

Molecules ◽  
2013 ◽  
Vol 18 (9) ◽  
pp. 10162-10188 ◽  
Author(s):  
Arjang Fahim ◽  
Rishi Mukhopadhyay ◽  
Ryan Yandle ◽  
James Prestegard ◽  
Homayoun Valafar

1968 ◽  
Vol 46 (24) ◽  
pp. 3903-3908 ◽  
Author(s):  
Keith Bowden ◽  
J. G. Irving ◽  
M. J. Price

The chemical shifts of the ring protons in a series of monosubstituted mesitylenes and durenes, and of the 10-protons of a series of 9-substituted triptycenes and anthracenes have been measured in dimethyl sulfoxide, acetone, 2-methoxyethanol, and carbon tetrachloride. The solvent dependence of the substituent chemical shifts has been analyzed by linear free energy relations. The systems all show similar dependence which increases with increasing dielectric constant of the solvent. This does not result from the field effect being transmitted through the medium, but appears to arise from the formation of a hydrogen-bonded interaction between the solvent and the hydrogen of the solute. The substituent chemical shifts appear to arise from contributions from substituent field, resonance, magnetic anisotropy, and solvent effects.


Sign in / Sign up

Export Citation Format

Share Document