similar dependence
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexandr V. Shitov ◽  
Vasily V. Terentyev ◽  
Govindjee Govindjee

Carbonic anhydrase (CA) activity, associated with Photosystem II (PSII) from Pisum sativum, has been shown to enhance water oxidation. But, the nature of the CA activity, its origin and role in photochemistry has been under debate, since the rates of CA reactions, measured earlier, were less than the rates of photochemical reactions. Here, we demonstrate high CA activity in PSII from Pisum sativum, measured by HCO3- dehydration at pH 6.5 (i.e. under optimal condition for PSII photochemistry), with kinetic parameters Km of 2.7 mM; Vmax of 2.74·10-2 mM·sec-1; kcat of 1.16·103 sec-1 and kcat/Km of 4.1·105 M-1 sec-1, showing the enzymatic nature of this activity, which kcat exceeds by ~13 times the rate of PSII, as measured by O2 evolution. The similar dependence of HCO3- dehydration, of the maximal quantum yield of photochemical reactions and of O2 evolution on the ratio of chlorophyll/photochemical reaction center II demonstrate the interconnection of these processes on the electron donor side of PSII. Since the removal of protons is critical for fast water oxidation, and since HCO3- dehydration consumes a proton, we suggest that CA activity, catalyzing very fast removal of protons, supports efficient water oxidation in PSII and, thus, photosynthesis in general.


2021 ◽  
Vol 927 ◽  
Author(s):  
Jelle B. Will ◽  
Dominik Krug

The goal of this study is to elucidate the effect the particle moment of inertia (MOI) has on the dynamics of spherical particles rising in a quiescent and turbulent fluid. To this end, we performed experiments with varying density ratios $\varGamma$ , the ratio of the particle density and fluid density, ranging from $0.37$ up to $0.97$ . At each $\varGamma$ the MOI was varied by shifting mass between the shell and the centre of the particle to vary $I^*$ (the particle MOI normalised by the MOI of a particle with the same weight and a uniform mass distribution). Helical paths are observed for low, and ‘three-dimensional (3-D) chaotic’ trajectories at higher values of $\varGamma$ . The present data suggest no influence of $I^*$ on the critical value for this transition $0.42<\varGamma _{{crit}}<0.52$ . For the ‘3-D chaotic’ rise mode, we identify trends of decreasing particle drag coefficient ( $C_d$ ) and amplitude of oscillation with increasing $I^*$ . Due to limited data it remains unclear if a similar dependence exists in the helical regime as well. Path oscillations remain finite for all cases studied and no ‘rectilinear’ mode is encountered, which may be the consequence of allowing for a longer transient distance in the present compared with earlier work. Rotational dynamics did not vary significantly between quiescent and turbulent surroundings, indicating that for the present configuration these are predominantly wake driven.


2021 ◽  
Author(s):  
Anže Božič ◽  
Rudolf Podgornik

We generalize the Kirkwood-Shumaker theory of protonisation fluctuation for an anisotropic distribution of dissociable charges on a globular protein. The fluctuations of the total charge and the total dipole moment, in contrast to their average values, depend on the same proton occupancy correlator, thus exhibiting a similar dependence also on the solution pH. This has important consequences for the Kirkwood-Shumaker interaction and its dependence on the bathing solution conditions.


2021 ◽  
Author(s):  
Hayden Nunley ◽  
Xufeng Xue ◽  
Jianping Fu ◽  
David K. Lubensky

Studies of fate patterning during development typically emphasize cell-cell communication via diffusible signals. Recent experiments on monolayer stem cell colonies, however, suggest that mechanical forces between cells may also play a role. These findings inspire a model of mechanical patterning: fate affects cell contractility, and pressure in the cell layer biases fate. Cells at the colony boundary, more contractile than cells at the center, seed a pattern that propagates via force transmission. In agreement with previous observations, our model implies that the width of the outer fate domain depends only weakly on colony diameter. We further predict and confirm experimentally that this same width varies non-monotonically with substrate stiffness. This finding supports the idea that mechanical stress can mediate patterning in a manner similar to a morphogen; we argue that a similar dependence on substrate stiffness can be achieved by a chemical signal only if strong constraints on the signaling pathway's mechanobiology are met.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sadia Iqbal ◽  
Sara Musaddiq ◽  
Robina Begum ◽  
Ahmad Irfan ◽  
Zahoor Ahmad ◽  
...  

Abstract The purpose of present work is to fabricate rhodium nanoparticles in Poly(N-isopropylmethacrylamide-acrylic acid) [p(NMAA)] microgel system. Synthesized polymer [p(NMAA)] microgels and rhodium nanoparticles loaded [Rh-p(NMAA)] microgels were analyzed by FTIR (Fourier Transform Infra-red) spectroscopy, XRD (X-ray Diffraction) analysis and UV/Vis (Ultraviolet–Visible) spectroscopy. Catalytic reductive conversion of P-nitrophenol (P-Nph) into P-aminophenol (P-Aph) via Rh-p(NMAA) was used to evaluate the catalytic activity of the hybrid microgel [Rh-p(NMAA)]. Kinetic study of catalytic reductive conversion of P-Nph was explored by considering various reaction parameters. It was found that the value of first order observed rate constant (k obs) was varied from 0.019 to 0.206 min−1 with change in concentration of sodium borohydride (SBH) from 3 to 14 mM at given temperature. However, further increment in concentration of SBH from 14 to 17 mM, reduced the value of k obs from 0.206 to 0.156 min−1. The similar dependence of k obs on concentration of P-Nph was observed at specific concentration of SBH and Rh-p(NMAA) at constant temperature. Kinetic study reveals that conversion of P-Nph to P-Aph takes place on the surface of rhodium nanoparticles (RhNPs) by adopting different reactions intermediates and obeys the Langmuir-Hinshelwood mechanism. Reduction efficiency of recycled Rh-p(NMAA) catalytic system was also measured and no significant reduction in the percentage catalytic activity was obtained up to four cycles for P-Nph conversion into P-Aph.


2020 ◽  
Vol 10 (3) ◽  
pp. 206-212
Author(s):  
Vijeesh Padmanabhan ◽  
Maneesha P. Madhu ◽  
Supriya M. Hariharan

Aim: To study the temperature stability of TGS doped with ZnSO4, CdCl2, BaCl2, and compare it with that of pure TGS. Objectives: Synthesizing pure and doped TGS and studying their temperature dependence using TGA, DTA, and DSC analysis. Methods: Slow cooling solution growth was used to grow single crystals of pure and doped TGS. The TGA, DTA and DSC analysis was conducted for determining the temperature stability. Results: The thermal analysis of pure and doped TGS shows that the doped samples show a similar dependence on temperature as pure TGS. The temperature of decomposition of pure and doped samples (BTGS, ZTGS, CdTGS) was 226.60°C, 228.38°C, 229.13°C, and 239.13°C respectively. The melting onset of these samples was 214.51°C, 216.04°C, 217.69°C and 216.04°C respectively. Conclusion: The study shows that doping TGS with the above three described materials did not alter their temperature stability considerably. It is a good result as doping TGS, for varying its characteristics like absorbance, reflectance, bandgap energy, etc., which did not alter its temperature stability. Therefore, TGS doped with the above three dopants can be used at the same temperature ranges as of pure TGS but with much-improved efficiency.


2020 ◽  
Author(s):  
Debasish Sarkar ◽  
Z. Iris Zhu ◽  
Emily Paul ◽  
David Landsman ◽  
Randall H. Morse

AbstractThe Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In yeast, Mediator is recruited by activators via its tail module and then facilitates assembly of the pre-initiation complex (PIC), including Pol II, setting the stage for productive transcription. Mediator occupies proximal promoter regions only transiently prior to Pol II escape; interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes Mediator occupancy at promoters. However, whether Mediator occupancy and dynamics differ for gene cohorts induced by stress or alternative growth conditions has not been examined on a genome-wide scale. Here we investigate Mediator occupancy following heat shock or CdCl2 induction, with or without depletion of Kin28. We find that Pol II occupancy exhibits similar dependence on Mediator under normal and heat shock conditions; however, Mediator occupancy does not increase upon Kin28 depletion at most genes active during heat shock, indicating altered dynamics. Furthermore, Mediator occupancy persists at genes repressed by heat shock or CdCl2 induction and exhibits peaks upstream of the proximal promoter whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting an altered dynamics or stronger engagement with activators under these conditions.


2020 ◽  
Author(s):  
Stéphane Chantepie ◽  
Luis-Miguel Chevin

AbstractGenetic correlations between traits can strongly impact evolutionary responses to selection, and may thus impose constraints on adaptation. Theoretical and empirical work has made it clear that, without strong linkage, genetic correlations at evolutionary equilibrium result from an interplay of correlated pleiotropic effects of mutations, and correlational selection favoring combinations of trait values. However, it is not entirely clear how the strength of stabilizing selection influences this compromise between mutation and selection effects on genetic correlations. Here, we show that the answer to this question crucially depends on the intensity of genetic drift. In large, effectively infinite populations, genetic correlations are unaffected by the strength of selection, regardless of whether the genetic architecture involves common small-effect mutations (Gaussian regime), or rare large-effect mutations (House-of-Cards regime). In contrast in finite populations, the strength of selection does affect genetic correlations, by shifting the balance from drift-dominated to selection-dominated evolutionary dynamics. The transition between these domains depends on mutation parameters to some extent, but with a similar dependence of genetic correlation on the strength of selection. Our results are particularly relevant for understanding how senescence shapes patterns of genetic correlations across ages, and genetic constraints on adaptation during colonization of novel habitats.


Sign in / Sign up

Export Citation Format

Share Document