Catalytic CO Oxidation on Unreconstructed Cu(110) by Reactive As-Adsorbed Oxygen Atoms below 230 K

1996 ◽  
Vol 100 (3) ◽  
pp. 1048-1054 ◽  
Author(s):  
Tsuyoshi Sueyoshi ◽  
Takehiko Sasaki ◽  
Yasuhiro Iwasawa
2019 ◽  
Author(s):  
Wugen Huang ◽  
qingfei liu ◽  
Zhiwen Zhou ◽  
Yangsheng Li ◽  
Yong Wang ◽  
...  

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu<sub>2</sub>O-Pt, Cu<sub>2</sub>O-Ag, Cu<sub>2</sub>O-Au interfaces, we found that Cu<sub>2</sub>O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu<sub>2</sub>O-Pt and Cu<sub>2</sub>O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu<sub>2</sub>O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O<sub>2</sub>, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu<sub>2</sub>O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.


2019 ◽  
Author(s):  
Wugen Huang ◽  
Yangsheng Li ◽  
Yong Wang ◽  
Yunchuan Tu ◽  
Dehui Deng ◽  
...  

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu<sub>2</sub>O-Pt, Cu<sub>2</sub>O-Ag, Cu<sub>2</sub>O-Au interfaces, we found that Cu<sub>2</sub>O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu<sub>2</sub>O-Pt and Cu<sub>2</sub>O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu<sub>2</sub>O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O<sub>2</sub>, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu<sub>2</sub>O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.


2016 ◽  
Vol 188 ◽  
pp. 57-67 ◽  
Author(s):  
Lu-Cun Wang ◽  
C. M. Friend ◽  
Rebecca Fushimi ◽  
Robert J. Madix

The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.


2021 ◽  
Vol 374 ◽  
pp. 137842
Author(s):  
Soren B. Scott ◽  
Jakob Kibsgaard ◽  
Peter C.K. Vesborg ◽  
Ib Chorkendorff

2008 ◽  
Vol 22 (24) ◽  
pp. 4153-4161 ◽  
Author(s):  
YU QIAN ◽  
YU XUE ◽  
GUANG-ZHI CHEN

A unidirectional coupling method to successfully suppress spiral waves in excitable media is proposed. It is shown that this control method has high control efficiency and is robust. It adapts to control of spiral waves for catalytic CO oxidation on platinum as well as for the FHN model. The power law n ~ c-k of control time steps n versus the coupling strength c for different models has been obtained.


Science ◽  
2014 ◽  
Vol 345 (6204) ◽  
pp. 1599-1602 ◽  
Author(s):  
J. Saavedra ◽  
H. A. Doan ◽  
C. J. Pursell ◽  
L. C. Grabow ◽  
B. D. Chandler

2016 ◽  
Vol 18 (32) ◽  
pp. 22647-22660 ◽  
Author(s):  
Tao Li ◽  
Minkyu Kim ◽  
Rahul Rai ◽  
Zhu Liang ◽  
Aravind Asthagiri ◽  
...  
Keyword(s):  

Alkanes form strongly-bound σ-complexes on RuO2(110) and change configurations in the presence of co-adsorbed oxygen atoms.


1999 ◽  
Vol 1 (22) ◽  
pp. 5241-5249 ◽  
Author(s):  
Jens Poppe ◽  
Stefan Völkening ◽  
Andreas Schaak ◽  
Eckart Schütz ◽  
Jürgen Janek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document