Density Functional Theory of Adsorption in Spherical Cavities and Pore Size Characterization of Templated Nanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures

Langmuir ◽  
2002 ◽  
Vol 18 (5) ◽  
pp. 1550-1560 ◽  
Author(s):  
Peter I. Ravikovitch ◽  
Alexander V. Neimark
Holzforschung ◽  
2003 ◽  
Vol 57 (2) ◽  
pp. 150-164 ◽  
Author(s):  
B. Durbeej ◽  
L.A. Eriksson

Summary Density functional theory methods are utilized to investigate structural features and stabilities of the most common lignin dimerization products. It is found that intra-molecular hydrogen bonding acts as a stabilizing force in the lowest-energy conformer(s) of several different dimeric lignin structures. Furthermore, the calculations show that the hypothesis of thermodynamic control of monolignol dimerization accounts for some of the results obtained in experimental studies aimed at determining the ratios of intermonomeric linkages. A quantitative correlation between experimentally observed ratios and calculated relative energies cannot, however, be pointed out.


2011 ◽  
Vol 89 (6) ◽  
pp. 671-687 ◽  
Author(s):  
Pablo J. Bruna ◽  
Friedrich Grein ◽  
Jack Passmore

The structures and stabilities of chainlike (CO2)n (n = 2–6) polycarbonates, where adjacent C atoms are linked by C–O–C bonds, were investigated at the density functional theory (DFT) level (B3PW91/6–311G(2d,p)), including dicarboxylic dianions, [CnO2n+1]2–, and the corresponding acids, [CnO2n+1]H2, and Li salts, [CnO2n+1]Li2. At equilibrium, the most stable systems have Cs, C2, or C2v symmetries. In the gas phase, these dianions are generally metastable with respect to spontaneous ejection of one electron, yet in the presence of counterions they become stabilized, for example, as [CnO2n+1]2–(Li+)2 ion pairs. [CnO2n+1]2– linkages are also stabilized as dicarboxylic acids, [CnO2n+1]H2; we find the latter to have equilibrium conformations of higher symmetry than previously reported in the literature. To the best of our knowledge, none of the [CnO2n+1]X2 (X = Li or H) compounds with n ≥ 2 have been reported in the experimental literature (albeit, the alkyl esters C2O5R2 and C3O7R2 are commercially available). All CO bonds in C2O5X2 to C6O13X2 have single- to double-bond character (≈140–118 pm), indicating that the [CnO2n+1] moieties are held together by strong chemical forces (in contrast to the weakly bound complexes (CO2)n and (CO2)n–, n > 1). Vibrational frequencies were calculated to ensure all conformations were true minima. The IR and Raman intensities show that the high intensity C=O stretching modes (1750 ± 100 cm–1) will help in the spectral characterization of these compounds. Solvation calculations using the polarizable continuum model (PCM) find that C2O52– can be formed via CO32– + CO2 as well as CO3–[Formula: see text], each reaction having ΔG298 < 0 in practically all solvents. This result confirms the experimentally observed large solubility of CO2(g) in molten carbonates, CO3M2 (M = Li, Na, or K). In contrast, starting with n = 2, the reactions [CnO2n+1]2– + CO2 do not proceed spontaneously in any solvent (ΔG298 > 0).


2010 ◽  
Vol 17 (4) ◽  
pp. 701-708
Author(s):  
Diana Barraza-Jiménez ◽  
Manuel Alberto Flores-Hidalgo ◽  
Donald H. Galvan ◽  
Esteban Sánchez ◽  
Daniel Glossman-Mitnik

2011 ◽  
Vol 89 (9) ◽  
pp. 1150-1161 ◽  
Author(s):  
Dmitry Skachkov ◽  
Mykhaylo Krykunov ◽  
Tom Ziegler

We report here on an improved first principles method that can determine NMR shielding tensors for periodic systems. Our scheme evaluates the shielding tensor as the second derivative of the total electronic energy with respect to a nuclear magnetic moment and an external magnetic field. Both the induced current density J(α) due to the first perturbation from the nuclear magnetic moment as well as the interaction of J(α) with the second perturbation in the form of an external magnetic field are evaluated analytically. Our approach is based on Kohn–Sham density functional theory and gauge-including atomic orbitals. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn–Sham potential fully without the use of effective core potentials. The method is implemented into the periodic program BAND. The new scheme represents an improvement over a previously proposed method in that use can be made of the zero-order Kohn–Sham orbitals from a calculation based on a primitive cell instead of a supercell. Further, J(α) is evaluated analytically rather than by a finite difference approach. The improvements reduce the required computational time by up to two orders of magnitude for three-dimensional systems. Such a reduction is made possible by the fact that we are using atomic centered basis functions. The new implementation is further able to take into account scalar relativistic effects within the zero-order regular approximation. Results from calculations of NMR shielding constants based on the present approach are presented for systems with one-, two-, and three-dimensional periodicity. The reported values are compared to experiment and results from the previously proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document