Molecular Dynamics Simulation of Nanosized Water Droplet Spreading in an Electric Field

Langmuir ◽  
2013 ◽  
Vol 29 (13) ◽  
pp. 4266-4274 ◽  
Author(s):  
F. H. Song ◽  
B. Q. Li ◽  
C. Liu
2019 ◽  
Vol 97 (8) ◽  
pp. 869-874
Author(s):  
Xue-Qing Chen ◽  
Lei Tong

In this paper, mesoscopic lattice–Boltzmann method (LBM) and microscopic molecular dynamics simulation method were used to simulate droplet dynamic wetting under microgravity. In terms of LBM, the wetting process of a droplet on a solid wall surface was simulated by introducing the fluid–fluid and solid–fluid interactions. In terms of molecular dynamics simulation, the spreading process of water on gold surface was simulated. Calculation results showed that two kinds of calculation methods were based on the microscopic molecular theory or mesoscopic kinetics theory, and such models could effectively overcome the contact line paradox issue, which results from the macro-continuum assumption and non-slip boundary condition assumption. The spreading exhibits two-stage behavior: fast spreading and slow spreading stages. For the two simulation methods, the ratio of fast spreading stage duration to slow spreading duration, spreading capacity (equilibrium contact radius/initial radius), and the spreading exponent of the rapid stage were very close. However, the predictive spreading index of the slow spreading stage was different, owing to the different spreading mechanisms between meso- and nanoscales.


2020 ◽  
Vol 319 ◽  
pp. 114113
Author(s):  
En Jiang ◽  
Jun Huo ◽  
Yang Luo ◽  
Zhiying Li ◽  
Xiaopeng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document