Pyrene Phospholipid in Monolayer AssembliesPhotoinduced Electron Transfer Investigated by Time-Resolved Fluorescence Emission

Langmuir ◽  
1997 ◽  
Vol 13 (19) ◽  
pp. 4929-4932 ◽  
Author(s):  
Heinz Huesmann ◽  
George Striker ◽  
Dietmar Möbius
2020 ◽  
Vol 10 (3) ◽  
pp. 178-188
Author(s):  
Bipin Rooj ◽  
Ankita Dutta ◽  
Debojyoti Mukherjee ◽  
Sahidul Islam ◽  
Ujjwal Mandal

Background: Understanding the interaction between different organic dyes and carbon quantum dots helps us to understand several photo physical processes like electron transfer, energy transfer, molecular sensing, drug delivery and dye degradation processes etc. Objective: The primary objective of this study is to whether the carbon quantum dots can act as an electron donor and can participate in the different photo physical processes. Methods: In this work, Carbon Quantum Dots (CQDLs) are synthesized in most economical and simple carbonization method where petals of Nelumbo nucifera L. are used as a carbon precursor. The synthesized CQDLs were characterized by using experimental techniques like UV−Vis absorption, FT-IR, Transmission Electron Microscopy (TEM), steadystate and time-resolved fluorescence spectroscopy. Results: The spectral analysis shows that the so synthesized CQDLs are spherical in shape and its diameter is around 4.2 nm. It shows the fluorescence emission maximum at 495 nm with a quantum yield of 4%. In this work the interaction between Carbon Quantum Dots (CQDLs) and an organic dye Malachite Green (MG) is studied using fluorescence spectroscopic technique under ambient pH condition (At pH 7). The quenching mechanism of CQDLs with MG was investigated using Stern-Volmer equation and time-resolved fluorescence lifetime studies. The results show that the dominant process of fluorescence quenching is attributed to Forster Resonance Energy Transfer (FRET) having a donor acceptor distance of 53 Å where CQDLs act as a donor and MG acts as an acceptor. Conclusion: This work has a consequence that CQDLs can be used as a donor species for different photo physical processes such as photovoltaic cell, dye sensitized solar cell, and also for antioxidant activity study.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2434 ◽  
Author(s):  
Sándor Lajos Kovács ◽  
Miklós Nagy ◽  
Péter Pál Fehér ◽  
Miklós Zsuga ◽  
Sándor Kéki

The properties of 1,4-isocyanoaminonaphthalene (1,4-ICAN) and 2,6-isocyanoaminonaphthalene (2,6-ICAN) isomers are discussed in comparison with those of 1,5-isocyanoaminonaphthalene (1,5-ICAN), which exhibits a large positive solvatochromic shift similar to that of Prodan. In these isocyanoaminonaphthalene derivatives, the isocyano and the amine group serve as the donor and acceptor moieties, respectively. It was found that the positions of the donor and the acceptor groups in these naphthalene derivatives greatly influence the Stokes and solvatochromic shifts, which decrease in the following order: 1,5-ICAN > 2,6-ICAN > 1,4-ICAN. According to high-level quantum chemical calculations, this order is well correlated with the charge transfer character of these compounds upon excitation. Furthermore, unlike 1,5-ICAN, the 1,4-ICAN and 2,6-ICAN isomers showed relatively high quantum yields in water, that were determined to be 0.62 and 0.21, respectively. In addition, time-resolved fluorescence experiments revealed that both the radiative and non-radiative decay rates for these three ICAN isomers varied unusually with the solvent polarity parameter ET(30). The explanations of the influence of the solvent polarity on the resulting steady-state and time-resolved fluorescence emission spectra are also discussed.


1996 ◽  
Vol 16 (2) ◽  
pp. 87-106 ◽  
Author(s):  
Sérgio T. Ferreira ◽  
Tatiana Coelho-Sampaio

Applications of intrinsic fluorescence measurements in the study of Ca2+-transport ATPases are reviewed. Since the initial reports showing that the fluorescence emission was sensitive to Ca2+ binding, a substantial amount of work has focused on the use of both steady-state and time-resolved fluorescence spectroscopy to investigate structure-function relationships in sarcoplasmic reticulum and plasma membrane Ca2+-ATPases. These studies have revealed ligand-induced conformational changes, as well as provided information on protein-protein, protein-solvent and/or protein-lipid interactions in different functional states of these proteins. The main results of these studies, as well as possible future prospects are discussed.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4932 ◽  
Author(s):  
Laura Espinar-Barranco ◽  
Marta Meazza ◽  
Azahara Linares-Perez ◽  
Ramon Rios ◽  
Jose Manuel Paredes ◽  
...  

Biological samples are a complex and heterogeneous matrix where different macromolecules with different physicochemical parameters cohabit in reduced spaces. The introduction of fluorophores into these samples, such as in the interior of cells, can produce changes in the fluorescence emission properties of these dyes, caused by the specific physicochemical properties of cells. This effect can be especially intense with solvatofluorochromic dyes, where changes in the polarity environment surrounding the dye can drastically change the fluorescence emission. In this article, we studied the photophysical behavior of a new dye and confirmed the aggregation-induced emission (AIE) phenomenon with different approaches, such as by using different solvent proportions, increasing the viscosity, forming micelles, and adding bovine serum albumin (BSA), through analysis of the absorption and steady-state and time-resolved fluorescence. Our results show the preferences of the dye for nonpolar media, exhibiting AIE under specific conditions through immobilization. Additionally, this approach offers the possibility of easily determining the critical micelle concentration (CMC). Finally, we studied the rate of spontaneous incorporation of the dye into cells by fluorescence lifetime imaging and observed the intracellular pattern produced by the AIE. Interestingly, different intracellular compartments present strong differences in fluorescence intensity and fluorescence lifetime. We used this difference to isolate different intracellular regions to selectively study these regions. Interestingly, the fluorescence lifetime shows a strong difference in different intracellular compartments, facilitating selective isolation for a detailed study of specific organelles.


2001 ◽  
Vol 105 (10) ◽  
pp. 2043-2055 ◽  
Author(s):  
Dmitri Toptygin ◽  
Regina S. Savtchenko ◽  
Norman D. Meadow ◽  
Ludwig Brand

2013 ◽  
Vol 117 (20) ◽  
pp. 10308-10314 ◽  
Author(s):  
Rudi Agus Setiawan ◽  
Hiromasa Nishikiori ◽  
Yohei Uesugi ◽  
Kyohei Miyashita ◽  
Mostafa A. El-Sayed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document